Home
Class 12
MATHS
If veca, vecb,vecc are unit vectors such...

If `veca, vecb,vecc` are unit vectors such that `veca` is perpendicular to the plane of `vecb, vecc` and the angle between `vecb,vecc` is `pi/3`, then `|veca+vecb+vecc|=`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B

Here, `|veca|=1,|vecb|=1, |vecc|=1`
`veca.vecb=0` and `veca.vecc=0`
Also, `vecb.vecc=|vecb|.|vecc|cospi/3=1.1.1/2=1/2`
Now, `|veca+vecb+vecc|^(2)`
`=veca^(2)+vecb^(2)+vecc^(2)+2veca.vecb+2vecb.vecc`
`rArr 1^(2)+1^(2)+1^(2)+2.1/2=4`
`therefore |veca+vecb+vecc|=2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc and the angle between vecb and vecc is pi//3 then the value of |vecaxxvecb -veca xx vecc| is

If veca,vecb,vecc are three vectors such that veca+2vecb+vecc=vec 0 and|veca|=3,|vecb|=4,|vecc|=7 find the angle between vecaandvecb

If veca,vecb,vecc are three vectors such that veca+2vecb+vecc=vec0 and |veca|=3,|vecb|=4,|vecc|=7 , find the angle between veca and vecb .

If veca,vecb,vecc are three vectors such that veca+2vecb+vecc=vec0and|veca|=3,|vecb|=4,|vecc|=7 , find the angle between vecaandvecb .

Let veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is (pi)/(3). Prove that veca=+-(2)/(sqrt(3))(vecbxxvecc).

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .

If veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is pi//6 . Prove that veca=pm2(vecbxxvecc)