Home
Class 12
MATHS
A unit vector veca in the plane of vecb=...

A unit vector `veca` in the plane of `vecb=2hati+hatj` and `vecc=hati-hatj+hatk` is such that angle between `veca` and `vecd` where `vecd=vecj+2veck` is

A

`(veci+vecj+veck)/sqrt(3)`

B

`(veci-vecj+veck)/sqrt(3)`

C

`(2veci+vecj)/sqrt(5)`

D

`(2veci-vecj)/sqrt(5)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `veca=lambdavecb+muvecc`, then `(veca.vecb)/(ab) = (veca.vecd)/(ad)`
`rArr ((lambdavecb.vecb+muvecc.vecb))/(b) = (lambdavecb.vecd+muvecc.vecd)/(d)`
`rArr (5lambda+mu)/sqrt(5) = (lambda+mu)/sqrt(5)`
`rArr lambda=0`
`therefore a=(hati-hatj+hatk)/sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If |veca|=2, |vecb|=7 and vecaxxvecb=3hati-2hatj+6hatk find the angle between veca and vecb .

The unit vector in the direction of vecA=hati+hatj+hatk is

Find |veca xx vecb| where veca = 3hati + 4hatj and vecb = hati + hatj + hatk

Find veca.vecb when veca=2hati+2hatj-hatk" ""and"" " vecb=6hati-3hatj+2hatk

Find veca.vecb when veca=hati-2hatj+hatk" ""and"" " vecb=3hati-4hatj-2hatk