Home
Class 12
MATHS
The vectors vecx and vecy satisfy the eq...

The vectors `vecx` and `vecy` satisfy the equation `pvecx+qvecy=veca` (where p,q are scalar constants and `veca` is a known vector). It is given that `vecx.vecy ge (|veca|^(2))/(4pq)`, then `(|vecx|)/(|vecy|)` is equal to `(pq gt 0)`

A

1

B

`p^(2)/q^(2)`

C

`p/q`

D

`q/p`

Text Solution

Verified by Experts

The correct Answer is:
D

`pvecx+qvecy=veca`
`|pvecx-qvecy|^(2)= |pvecx+qvecy|^(2)-4pqvecx.vecy ge0`
but `vecx.vecyge(|veca|^(2))/(4pq)`
`rArr |veca|^(2)=4pqvecx.vecy`
`rArr |pvecx-qvecy|=0`
`rArr pvecx=qvecy rArr vecx=veca/(2p), vecy=veca/(2q)`
`rArr |vecx|/|vecy|=q/p`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Three vectors veca, vec b and vec c satisfy the condition vec a + vec b + vec c = 0 .Evaluate the quantity. mu = vec a.vec b + vec b.vec c+ veca.vec c if |vec a| = 1, |vec b| = 4, |vec c| = 2

The scalars l and m such that lveca + m vecb =vecc, " where " veca, vecb and vecc are given vectors, are equal to

Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb= mu vecp,vecb.vecq=0 and (vecb)^(2) =1 where mu is a sclar. Then |(veca.vecq) vecp-(vecp.vecq)veca| is equal to

Three vectors veca,vecbandvecc satisfy the condition veca+vecb+vecc=vec0 . Evaluate the quantity mu=veca*vecb+vecb*vecc+vecc*veca , if |veca|=3,|vecb|=4and|vecc|=2 .

Given two orthogonal vectors vecA and VecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then (vecP xx vecB ) xx vecB is equal to

vec p , vec q ,a n d vec r are three mutually perpendicular vectors of the same magnitude. If vector vec x satisfies the equation vec pxx(( vec x- vec q)xx vec p)+ vec qxx(( vec x- vec r)xx vec q)+ vec rxx(( vec x- vec p)xx vec r)=0,t h e n vec x is given by a. 1/2( vec p+ vec q-2 vec r) b. 1/2( vec p+ vec q+ vec r)"" c. 1/3( vec p+ vec q+ vec r) d. 1/3(2 vec p+ vec q- vec r)

Given that vec a , vec b , vec p , vec q are four vectors such that vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu is a scalar. Then |( vec adot vec q) vec p-( vec pdot vec q) vec a| is equal to (a) 2| vec p . vec q| (b) (1//2)| vec p . vec q| (c) | vec pxx vec q| (d) | vec p . vec q|

if vector vecx satisfying vecx xx veca+ (vecx.vecb)vecc =vecd is given by vecx = lambda veca + veca xx (vecaxx(vecdxxvecc))/((veca.vecc)|veca|^(2))

If vec x and vecy are unit vectors and |vecz| = 2/sqrt7 such that vecz + vecz xx vecx = vecy then find the angle theta between vecx and vecz