Home
Class 12
MATHS
If x + y + z = 12, x^(2) + Y^(2) + z^(2)...

If `x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96` and `(1)/(x)+(1)/(y)+(1)/(z)= 36` . Then find the value `x^(3) + y^(3)+z^(3).`

Text Solution

Verified by Experts

To get the value of `x^(3)+Y^(3) + z^(3) - 3xyz`
`= (x + y + z ) (x^(2)+Y^(2)+x^(2) - xy- yz - zx)` …(1)
We need the value of xyz and xy + yz + zx.
We have `(x + Y + z)^(2) = 144`
`therefore x^(2)+y^(2)+z^(2)+2xy+2yz+2xz=144`
`rArr `96 + 2(xy + yz + xz) =144
`rArr `xy+ yz+ zx = 24
Given that `(1)/(x)+(1)/(x)+(1)/(z)= 36`
`therefore (xy+yz+zx)/(xyz)=36`
`rArr xyz = (24)/(36)=(2)/(3)`
From (1),
`x^(3)+y^(3)+z^(3) - 2 = 12xx(96-24)`
=864
So, `x^(3)+y^(3)+z^(3) = 866`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.2|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x+y+z=12a n dx^2+y^2+z^2=96a n d1/x+1/y+1/z=36 , then the value x^3+y^3+z^3 divisible by prime number is________.

The value of x + y + z is 15. If a, x, y, z, b are in AP while the value of (1)/(x) + (1)/(y) + (1)/(z) " is " (5)/(3) . If a, x, y, z b are in HP, then find a and b .

If the lines (x-1)/(-3) =(y-2)/(2k) =(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-5) are perpendicular , find the value of k .

it x_(1)^(2) +2y_(1)^(2)+3z_(1)^(2)=x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2)=x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2)=2 " and " x_(2)x_(3) +2y_(2)y_(3)+3z_(2)z_(3)=x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1)=x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2)=1 Then find the value of |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|

If x + y + z = xyz, then prove that (2x)/(1- x^(2)) + (2y)/(1 - y^(2)) + (2z)/(1 - z^(2)) = (2x)/(1 - x^(2))cdot (2y)/(1 - y^(2))cdot (2z)/( 1- z^(2)) .