Home
Class 12
MATHS
If (10)^(9) + 2(11)^(1) (10)^(8) + 3(11)...

If `(10)^(9) + 2(11)^(1) (10)^(8) + 3(11)^(2) (10)^(7) + ...+ 10 (11)^(9) = k(10)^(9)` then k is equal to

A

`121/10`

B

`441/100`

C

100

D

110

Text Solution

Verified by Experts

The correct Answer is:
C

`S=10^(9)+2cdot11^(1)cdot10^(8)+…+10cdot11^(9)`
`therefore11/10cdotS=11^(1)cdot10^(8)+..+9cdot11^(9)+11^(10)`
Subtracting
`rArr-1/10cdotS=10^(9)+11^(1)cdot10^(8)+11^(2)cdot10^(7)+…+11^(9)-11^(10)`
`rArr-1/10S=10^(9)(((11/10)^(10)-1)/(11/10-1))-11^(10)`
`rArr-1/10S=11^(10)-10^(10)-11^(10)`
`rArrS=10^(11)`
`rArrS=100cdot10^(9)`
`rArrk=100`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise JEE Advanced Previous Year|16 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Numerical)|27 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

The value of 1/(sqrt(10) - sqrt(9)) - 1/(sqrt(11) - sqrt(10)) + 1/(sqrt(12) - sqrt(11)) - .... - 1/(sqrt(121) - sqrt(120)) is equal to

If |{:(.^(9)C_(4),.^(9)C_(5),.^(10)C_(r)),(.^(10)C_(6 ),.^(10)C_(7),.^(11)C_(r+2)),(.^(11)C_(8),.^(11)C_(9),.^(12)C_(r+4)):}|=0 , then the value of r is equal to

The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(11)(x^2+2x)^((11)/(10))+c (b) 5/6(x+1x)^((11)/(10))+c 6/7(x+1)^((11)/(10))+c (d) none of these

The value of sum_(r=0)^(10)(r)^(20)C_r is equal to: a. 20(2^(18)+^(19)C_(10)) b. 10(2^(18)+^(19)C_(10)) c. 20(2^(18)+^(19)C_(11)) d. 10(2^(18)+^(19)C_(11))

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Write (a) 9.87 xx 10^(9), (b) 4.134 xx 10^(-4) and (c) 1.432 xx 10^(-9) in decimal form.

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)