Home
Class 12
MATHS
Let a1,a2,a3 ...... a11 be real numbers ...

Let a1,a2,a3 ...... a11 be real numbers satisfying `a_1 =15, 27-2a_2 > 0 and a_k= 2a_(k-1) - a_(k-2)` for `k=3,4,.....11` If `(a1^2 +a2^2.......a11^2)/11 = 90` then find the value of `(a_1+a_2....+a_11)/11`

Text Solution

Verified by Experts

The correct Answer is:
0

`a_k=2a_(k-1)-a_(k-2)rArr a_1,a_2rArr a_1,a_2,.....a_(11)` are in A.P
`therefore (a_(1)^2+a_(2)^2+….+a_11^2)/(11)=(11a^2+35xx11d^2+110ad)/11=90`
`rArr 225+35d^2+150d^2+150d=90`
`35d^2+150d+135=0 rArr -3,-9//7`
`a_2 lt (27)/(2),` we get d= -3 and `d=-9//7`
`rArr (a_(1)+a_2+....+a_11)/(11)=11/2[30-10xx3]=0`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Le a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_2=15 , 27-2a_2>0a n da_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a1 2+a2 2+...+a 11 2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.

If a_1+a_2+a_3+...+a_n=1AAa_i>0,i=1,2,3, ,n , then find the maximum value of a_1 a_2a_3a_4a_5.... a_n.

If (1+x-2x^2)^6=1+a_1 x+a_2 x^2+a_2 x^3+......... , then the value of a_2+a_4+a_6+......+a_12 will be

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3+...+a_(40)x^(40), then find the value of a_1+a_3+a_5+...+a_(39)dot

Find the first five terms of the following sequence . a_1 = 1 , a_2 = 1 , a_n = (a_(n-1))/(a_(n-2) + 3) , n ge 3 , n in N

Consider an A. P .a_1,a_2,a_3,..... such that a_3+a_5+a_8 =11and a_4+a_2=-2 then the value of a_1+a_6+a_7 is.....

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

If a-1,a_2, ,a_n are positive real numbers whose product is a fixed number c , then the minimum value of a1 + d2 +..... + an-1 + 2an is

If (10)^9 + 2(11)^1 (10)^8 + 3(11)^2 (10)^7+...........+10 (11)^9= k (10)^9 , then k is equal to :