Home
Class 12
MATHS
If x,y in R^(+) such that x + y = 8, the...

If `x,y in R^(+)` such that x + y = 8, then find the minimum value of `(1 + (1)/(x)) (1 + (1)/(y))`

Text Solution

Verified by Experts

The correct Answer is:
`(25)/(16)`

`(+(1)/(x))(1+(1)/(y))=(1+x+y+xy)/(xy)=(9+xy)/(xy)=(9)/(xy)+1`.
Now,using `A.M ge G.M`., we have
`(x+y)/(2)ge sqrt(xy)`
`rArr 4 ge sqrt( xy)`
`rArr 16ge xy`
`rArr (1)/(xy) ge (1)/(16)`
`rArr (9)/(xy)+1 ge (25)/(16)`
Therefore, the minimum value of `(1+(1)/(x))(1+(1)/(y))` is `(25)/(16)`.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If (2.3)^x = (0.23)^y = 1000 , then find the value of 1/x- 1/y

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

Let xa n dy be two real variable such that x >0a n dx y=1 . Find the minimum value of x+y .

Let x,y in R , then find the maximum and minimum values of expression (x^(2)+y^(2))/(x^(2)+xy+4y^(2)) .

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If (x+1, y-2)=(3,1), find the values of x and y.

The value of x + y + z is 15. If a, x, y, z, b are in AP while the value of (1)/(x) + (1)/(y) + (1)/(z) " is " (5)/(3) . If a, x, y, z b are in HP, then find a and b .