Home
Class 12
MATHS
Prove that the value of determinant |{...

Prove that the value of determinant `|{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0`
where `omega` is complex cube root of unity .

Text Solution

Verified by Experts

`Delta =|{:(1,,omega,,omega^(2)),(omega,,omega^(2),,1),(omega^(2),,1,,omega):}|`
Applying `R_(1) to omega R_(1)` we get
`Delta =(1)/(omega) |{:(omega,,omega^(2),,omega^(3)),(omega,,omega^(2),,1),(omega^(2),,1,,omega):}|`
`=(1)/(omega)|{:(omega,,omega^(2),,omega^(3)),(omega,,omega^(2),,1),(omega^(2),,1,,omega):}|`
`(As R_(1) " and " R_(2) "are identical )"`
`=0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos

Similar Questions

Explore conceptually related problems

(2-omega)(2-omega^(2))(2-omega^(10))(2-omega^(11))="…….." , where omega is the complex cube root of unity

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

If omega = cis (2pi)/(3) , then number of distinct roots of |(z+1,omega,omega^(2)),(omega,z + omega^(2),1),(omega^(2),1,z+omega)| = 0.

The polynomial x^6+4x^5+3x^4+2x^3+x+1 is divisible by_______ where w is the cube root of units x+omega b. x+omega^2 c. (x+omega)(x+omega^2) d. (x-omega)(x-omega^2) where omega is one of the imaginary cube roots of unity.

If omega ne 1 is a cubit root unity and |(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))| = 3 k, then k is equal to

If omega is the cube root of unity then Assertion : (1-omega+omega^(2))^(6)+(1+omega-omega^(2))^(6)=128 Reason : 1+omega+omega^(2)=0

If is a cubeth root of unity root of : (1-omega+omega^(2))^(4)+(1+omega-omega^(2))^(4) is :

CENGAGE-DETERMINANTS-All Questions
  1. Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ...

    Text Solution

    |

  2. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  3. If f(theta)=|sinthetacosthetasintheta costhetasinthetacostheta costhet...

    Text Solution

    |

  4. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  5. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  6. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  7. The determinant "Delta"=|(a^2+x) ab ac ab (b^2+x) bc ac bc (c^2+...

    Text Solution

    |

  8. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,t h e nf(2x)-f(x) is d...

    Text Solution

    |

  9. If g(x)-(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of d...

    Text Solution

    |

  10. If (x)= |x^2+4x-3 2x+4 13 ...

    Text Solution

    |

  11. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  12. Let f (n) = |{:(n,,n+1,,n+2),(.^(n)P(n),,.^(n+1)P(n+1),,.^(n+2)P(n+2)...

    Text Solution

    |

  13. If |x^n x^(n+2)x^(2n)1x^a a x^(n+5)x^(a+6)x^(2n+5)|=0,AAx in R ,w h e...

    Text Solution

    |

  14. Let x<1, then value of [[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]...

    Text Solution

    |

  15. If f (x) = |(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0)|then

    Text Solution

    |

  16. Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are non...

    Text Solution

    |

  17. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  18. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  19. If f(x)=|x a a a x a a a x|=0, then f^(prime)(x)=0a n df^(x)=0 has com...

    Text Solution

    |

  20. Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),...

    Text Solution

    |

  21. Roots of the equation |x m n1a x n1a b x1a b c1|=0 are independent of ...

    Text Solution

    |