Home
Class 12
MATHS
The function f(x)=cos^(-1)((2[|sinx|+|co...

The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)

A

`[0,(7pi)/(6)]`

B

`[0,(pi)/(6)]`

C

`[(11pi)/(6)]`

D

`[pi,2pi]`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`1le|sinx|+|cosx|lesqrt2`
`therefore" "2[|sinx|+|cosx|]=2`
`thereforef(x)` is defined if
`sin^(2)x+2 sin x+(11)/(4)ge2`
`"or "(sinx+1)^(2)ge(1)/(4)`
`"or "sinx+1ge(1)/(2) or sin x+1le-(1)/(2)`
`"or "sinx ge-(1)/(2) or sin le-(3)/(2)` (which is not true)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE|Exercise Comprehension Type|7 Videos
  • FUNCTIONS

    CENGAGE|Exercise Question Bank|21 Videos
  • FUNCTIONS

    CENGAGE|Exercise Question Bank|21 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE|Exercise DPP 3.4|18 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE|Exercise Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Draw a graph of f(x) = sin {x} , where {x} represents the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

Knowledge Check

  • int_(0)^(1)[2x]dx where [] is the greatest integer function :

    A
    1
    B
    `(1)/(4)`
    C
    `(1)/(3)`
    D
    `(1)/(2)`.
  • Similar Questions

    Explore conceptually related problems

    Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

    Discuss the continuity of the function ([.] represents the greatest integer function): f(x)=[sin^(-1)x]

    lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

    Draw the graph of f(x)=[tan^(-1)x]," where "[*]" represents the greatest integer function".

    if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

    Discuss the continuity of the function ([.] represents the greatest integer function): f(x)=[2/(1+x^2)],xgeq0

    Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).