If `a in I`, then value of a for which `lim_(xrarra) (tan([x^(3)]-[x]^(3)))/((x-a)^(3))` exists finitely, is /are
A
0
B
1
C
`-1`
D
2
Text Solution
Verified by Experts
The correct Answer is:
A, B
Let `f(x)={x^(3)}-{x}^(3)` `f(a)=0` `(a^(+))=a^(3)-a^(3)=0` `f(a^(-))=underset(hrarr0)(lim)([(a-h)^(3)]-[a-h]^(3))=a^(3)-1-(a-1)^(3)=3a(a-1)` Since `f(a^(-))=0 rArr 3a(a-1)=0 rArr a=0 or a=1`
Topper's Solved these Questions
LIMITS
CENGAGE|Exercise Comprehension Type|4 Videos
LIMITS
CENGAGE|Exercise Question Bank|17 Videos
LIMITS
CENGAGE|Exercise ComprehensionType|2 Videos
JEE 2019
CENGAGE|Exercise Chapter 10|9 Videos
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is
The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is
If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is
Compute the limit underset(xrarra)lim((x^(n)-a^(n))/(x-a))
lim_(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)
It is given that f'(a) exists, then lim(xrarra) (x^(2)f(a) - a^(2)f(x))/(x-a) is:
Find the integral value of n for which lim_(x->0)(cos^2x-cosx-e^xcosx+e^x-(x^3)/2)/(x^n) is a finite nonzero number