Home
Class 12
MATHS
If a in I, then value of a for which lim...

If `a in I`, then value of a for which `lim_(xrarra) (tan([x^(3)]-[x]^(3)))/((x-a)^(3))` exists finitely, is /are

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A, B

Let `f(x)={x^(3)}-{x}^(3)`
`f(a)=0`
`(a^(+))=a^(3)-a^(3)=0`
`f(a^(-))=underset(hrarr0)(lim)([(a-h)^(3)]-[a-h]^(3))=a^(3)-1-(a-1)^(3)=3a(a-1)`
Since `f(a^(-))=0 rArr 3a(a-1)=0 rArr a=0 or a=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

Compute the limit underset(xrarra)lim((x^(n)-a^(n))/(x-a))

lim_(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

It is given that f'(a) exists, then lim(xrarra) (x^(2)f(a) - a^(2)f(x))/(x-a) is:

Find the integral value of n for which lim_(x->0)(cos^2x-cosx-e^xcosx+e^x-(x^3)/2)/(x^n) is a finite nonzero number