Home
Class 12
MATHS
If f(x)=(lim)(xvecoo)((x^2+a x+1)+x^(2n)...

If `f(x)=(lim)_(xvecoo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))a n d(lim)_(xvec+-1)f(x)` exist, then The value of `b` is `-1` b. 1 c. `0` d.`2`

A

`-1`

B

1

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=underset(nrarroo)(lim)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n))`
`={{:(x^(2)+ax+1",",|x|lt1),(2x^(2)+x+b",",|x|gt1),((-a+b+3)/(2)",",x=-1),((a+b+5)/(2)",",x=1):}`
`underset(xrarr-1)(lim)f(x)" exists if"`
`underset(xrarr -1)(lim)f(x)=underset(xrarr-1^(+))(lim)f(x)`
`rArr" "underset(xrarr-1^(-))(lim)(2x^(2)+x+b)=underset(xrarr-1^(+))(lim)(x^(2)+ax+1)`
`rArr" "2-1+b=1-a+1`
`rArr" "a+b=1" (i)"`
`underset(xrarr1)(lim)f(x)" exists if"`
`underset(xrarr1^(-))(lim)f(x)=underset(xrarr1^(+))(lim)f(x)`
`rArr" "underset(xrarr1^(-))(lim)(x^(2)+ax+1)=underset(xrarr1^(+))(lim)(2x^(2)+x+b)`
`rArr 1+a+1=2+1+b`
`rArr a-b=1" (ii)"`
`"Solving Eqs. (i) and (ii), we get a = 1 and b=0."`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a) -1 (b). 1 ( c.) 0 (d). 2

("lim")_(xvec0)((1+5x^2)/(1+3x^2))^1//x^2=____

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

If ("lim")_(xveca)[f(x)+g(x)]=2a n d ("lim")_(xveca)[f(x)-g(x)]=1, then find the value of ("lim")_(xveca)f(x)g(x)dot

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

If ("lim")_(xvecoo){(x^2+1)/(x+1)-(a x+b)}=0, then find the value of aa n dbdot

("lim")_(xvec0)(sin(x^2))/(1n(cos(2x^2-x)))is equal to 2 (b) -2 (c) 1 (d) -1

lim_(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1)) is equal to (a) 0 (b) oo (c) 1/2 (d) none of these

f(x)={x ,xlt=0 1,x=0,then find ("lim")_(xvec0) f(x) if exists x^2,x >0

Evaluate: ("lim")_(xvec0)(1-cos2x)/(x^2)