Home
Class 12
MATHS
Number of points where function f(x) def...

Number of points where function `f(x)` defined as `f:[0,2]pivecR ,f(x)={3-|cos x-1/(sqrt(2))|,|sinx<1/(sqrt(2))|2+|cos x+1/(sqrt(2))|,|s in x|geq1/(sqrt(2))` is non-differentiable is a. 2 b. 4 c. 6 d. 0

A

2

B

4

C

6

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)={{:(3-|cosx-(1)/(sqrt2)|",",|sinx|lt(1)/(sqrt2)),(2+|cosx+(1)/(sqrt2)|",",|sinx|ge(1)/(sqrt2)):}`
`" "={{:(3-|cosx-(1)/(sqrt2)|",",|sinx|gt(1)/(sqrt2)),(2+|cosx+(1)/(sqrt2)|",",|cosx|le(1)/(sqrt2)):}`
`" "={{:(3-cosx-(1)/(sqrt2)",",|cosx|gt(1)/(sqrt2)),(2+cosx+(1)/(sqrt2)",",|cosx|le(1)/(sqrt2)):}`
Thus, f(x) is discontinuous at `|cosx|=(1)/(sqrt2)` or
`x=(pi)/(4),(3pi)/(4),(5pi)/(4),(7pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Comprehension Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|1 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let the function f(x) be defined as follows: f(x)={x^(3)+x^(2)-10x,-1lexle0 cosx,0lexlepi//2 1+sin x, pi//2 lexlepi

The domain of the function defined by f(x)=cos^(-1) sqrt(x-1) is :

A function is defined by f(x)=2x-3 Find x such that f(x)=0.

Find the largest possible domain for the real valued function f defined by f(x)=sqrt(9-x^(2))/sqrt(x^(2)-1)

The number of points of discontinuity of g(x)=f(f(x)) where f(x) is defined as, f(x)={1+x ,0lt=xlt=2 3-x ,2 2

The number of integers in the range of the function f(x)=|4((sqrt(cos"x")-sqrt(sinx))(sqrt(cos"x")+sqrt(sinx)))/(cosx+sinx)| is______

Let the function f be defined by f(x)={(3x0lexle1),(-3x+51ltxle2):} , then:

CENGAGE-CONTINUITY AND DIFFERENTIABILITY-Single Correct Answer Type
  1. Statement 1: Minimum number of points of discontinuity of the funct...

    Text Solution

    |

  2. Number of points of discontinuity of f(x)=[sin^(-1)x]-[x] in its domai...

    Text Solution

    |

  3. If g(x)=(lim)(mvecoo)(x^mf(x)+h(x)+3)/(2x^m+4x+1) when x!=1a n dg(1)=e...

    Text Solution

    |

  4. The number of points of discontinuity of fx)=[2x^2]-{2x2}^2 (where [] ...

    Text Solution

    |

  5. Let f(x)={{:(-3+|x|",",-ooltxlt1),(a+|2-x|",",1lexltoo):} and g(x)={...

    Text Solution

    |

  6. The function f(x)=(x^3)/8-s inpix+4in[-4,4] does not take the value -4...

    Text Solution

    |

  7. Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. If f(x)={[x]+sqrt({x}),x<1 1/([x]+{x}^2),xgeq1 , then [where [.] and {...

    Text Solution

    |

  10. If f is an even function such that (lim)(hvec0)(f(h)-f(0))/h has some ...

    Text Solution

    |

  11. Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-...

    Text Solution

    |

  12. Number of points where f(x)=x^2-|x^2-1|+2||x|-1|+2|x|-7 is non-differe...

    Text Solution

    |

  13. If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer ...

    Text Solution

    |

  14. Number of points where function f(x) defined as f:[0,2]pivecR ,f(x)={3...

    Text Solution

    |

  15. Let f(x)={{:([x],x cancelinI),(x-1, x in I):}( where, [.] denotes the ...

    Text Solution

    |

  16. Iff(x)={{:(sin(cos^(-1)x)+cos(sin^(-1)x)",",xle0),(sin(cos^(-1)x)-cos(...

    Text Solution

    |

  17. If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then ...

    Text Solution

    |

  18. The number of points at which g(x)=1/(1+2/(f(x))) is not differentiabl...

    Text Solution

    |

  19. Let f(x)=lim(nrarroo) sum(r=0)^(n-1)(x)/((rx+1){(r+1)x+1}). Then

    Text Solution

    |

  20. Let the given function is differentiable at x = 1. f(x)={{:(lim(nrar...

    Text Solution

    |