Home
Class 12
MATHS
Let f(x) be a function defined on (-a ,a...

Let `f(x)` be a function defined on `(-a ,a)` with `a > 0.` Assume that `f(x)` is continuous at `x=0a n d(lim)_(xvec0)(f(x)-f(k x))/x=alpha,w h e r ek in (0,1)` then `f^(prime)(0^+)=0` b. `f^(prime)(0^-)=alpha/(1-k)` c. `f(x)` is differentiable at `x=0` d. `f(x)` is non-differentiable at `x=0`

A

`f'(0^(+))=0`

B

`f'(0^(-))=(alpha)/(1-k)`

C

f(x) is defferentiable at x = 0

D

f(x) is non-differentiable at x = 0

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

`because" "underset(xrarr0)(lim)(f(x)-f(lalpha))/(x)=alpha`
`rArr" "underset(xrarr0)(lim)(f(x)-f(0)+f(0)-(kx))/(x)=alpha`
`rArr" "underset(xrarr0)(lim)((f(x)-f(0))/(x)-(f(lx)-f(0))/(x))=alpha`
`rArr" "(underset(xrarr0)(lim)(f(x)-f(0))/(x))-(underset(xrarr0)(lim)(f(kx)-f(0))/(kx))k=alpha`
`rArr" "{{:(underset(xrarr0^(-))(lim)(f(x)-f(0))/(x)-underset(xrarr0^(-))(lim)(f(kx)-f(0))/(kx)k=alpha),(underset(xrarr0^(+))(lim)(f(kx)-f(0))/(kx)-underset(xrarr0^(+))(lim)(f(kx)-f(0))/(kx).k=alpha):}`
`={{:(f'(0^(-))-kf'(0^(-))=alpha),(f'(0^(+))-kf'(0^(+))=alpha):}`
`={{:((1-k)f'(0^(-))=alpha),((1-k)f'(0^(+))=alpha):}`
`={{:(f'(0^(-))=(alpha)/(-k)),(f'(0^(+))=(alpha)/(1-k)):}`
`therefore" "f'(0)=f'(0^(-))=f'(0^(+))=(alpha)/(1-k)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Comprehension Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Single Correct Answer Type|39 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f ''(x) be continuous at x=0 If ("lim")_(xvec0)(2f(x)-3a(f(2x)+bf(8x))/(sin^2x) exists and f(0)!=0,f^(prime)(0)!=0, then the value of (3a)/b is____

f(x)={x ,xlt=0 1,x=0,then find ("lim")_(xvec0) f(x) if exists x^2,x >0

Let a function f be defined by f(x)=(x-|x|)/x for x ne 0 and f(0)=2. Then f is

Let a function f be defined by f (x) =[x-|x|]/x for xne 0 and f(0)=2 .Then f is :

Let f(x) be a non-constant twice differentiable function defined on (oo, oo) such that f(x) = f(1-x) and f"(1/4) = 0 . Then

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

If f is an even function such that (lim)_(hvec0)(f(h)-f(0))/h has some finite non-zero value, then prove that f(x) is not differentiable at x=0.

The function f(x)=sin^(-1)(cosx) is (a) discontinuous at x=0 (b) continuous at x=0 (c) differentiable at x=0 (d) none of these