Home
Class 12
MATHS
Let g(x)=f(x)sinx ,w h e r ef(x) is a tw...

Let `g(x)=f(x)sinx ,w h e r ef(x)` is a twice differentiable function on `(-oo,oo)` such that `f(-pi)=1.` The value of `|g^n (-pi)|` equals __________

A

1

B

2

C

`-2`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

We have `g(x) = f(x) sin x" (1)"`
On differentiating equation (1) w.r.t. x, we get
`g'(x)=f(x)cos x+f'(x) sinx" (2)"`
Again differentiating equation (2) w.r.t. x, we get
`g''(x)=f(x)(-sinx)+f'(x) cosx+f'(x)cosx+f''(x)sinx" (3)"`
`rArr" "g''(-pi)=2f'(-pi)cos(-pi)=2xx1xx-1=-2`
Hence `g''(-pi)=-2`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If y=f(x) is an odd differentiable function defined on (-oo,oo) such that f^(prime)(3)=-2,t h e n|f^(prime)(-3)| equals_________.

Let f(x) be a non-constant twice differentiable function defined on (oo, oo) such that f(x) = f(1-x) and f"(1/4) = 0 . Then

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2. f(1)=1, then

Prove that the curves y=f(x),[f(x)>0],a n dy=f(x)sinx ,w h e r ef(x) is differentiable function, have common tangents at common points.

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f: R->R be a twice differentiable function such that f(x+pi)=f(x) and f''(x)+f(x)geq0 for all x in Rdot Show that f(x)geq0 for all x in Rdot

Let f(x) and g(x) are two differentiable functions. If f(x)=g(x) , then show that f'(x)=g'(x) . Is the converse true ? Justify your answer

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are differentiable functions. At some point x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)=4f(x_0),g^(prime)(x_0)=-7g(x_0), and h^(prime)(x_0)=kh(x_0) . Then k is________