Home
Class 12
MATHS
If f(x)=log(e)(log(e)x)/log(e)x then f'(...

If `f(x)=log_(e)(log_(e)x)/log_(e)x` then `f'(x)` at x = e is

A

0

B

1

C

e

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(x)=(log_(e)(log_(e)x))/(log_(e)x)`
`therefore" "f'(x)=((1)/(log_(e)x)xx(1)/(x)xxlog_(e)(x)-log_(e)(log_(e)(x))xx(1)/(x))/([log_(e)(x)]^(2))`
`therefore" "f'(e)=((1)/(e)-0)/(1)=1//e`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If f(x) =|log_(e)|x||, then f'(x) equals

I=int \ log_e (log_ex)/(x(log_e x))dx

If int((log_(ex)e)(log_(e^(2)x)e)log_(e^(3)x) e))1/x dx = Alog |1+logx|+B log |2+log x|+C log |3+ logx| +D then A-B+C is equal to

The value of int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx is

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

Draw the graph of f(X)=log_(e)(1-log_(e)x) . Find the point of inflection