Home
Class 12
MATHS
d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^...

`d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]=` `1/(sqrt(1-x^2))-1/(2sqrt(x-x^2))` `(-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2))` `1/(sqrt(1-x^2))+1/(2sqrt(x-x^2))` `1/(sqrt(1-x^2))` `0` b. `1//4` c. `-1//4` d. none of these

A

`(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))`

B

`(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))`

C

`(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))`

D

`(1)/(sqrt(1-x^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
B

`y=cos^(-1)[xsqrtx-sqrt(1-(sqrtx)^(2))sqrt(1-x^(2))]`
`=cos^(-1)x+cos^(-1)sqrtx`
`therefore" "(dy)/(dx)=(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

(sqrt(x)+(1)/(sqrt(x)))^(2)

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

lim_(xto0)(sqrt(x^(2)+1)-1)/(sqrt(x^(2)+16)-4)

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e r e -1

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

int(x^4-1)/(x^2sqrt(x^4+x^2+1))dx= sqrt(x^2+1/(x^2)+1)+C (sqrt(x^4+x^2+1))/(x^2)+C (sqrt(x^4+x^2+1))/x+C (d) none of these

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dxi se q u a lto e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^3)))+c e^x(1/(sqrt(1+x^2))-1/(sqrt((1+x^2)^3)))+c e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))+c none of these

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))