Home
Class 12
MATHS
Suppose that f(x) is differentiable i...

Suppose that `f(x)` is differentiable invertible function `f^(prime)(x)!=0a n dh^(prime)(x)=f(x)dot` Given that `f(1)=f^(prime)(1)=1,h(1)=0` and `g(x)` is inverse of `f(x)` . Let `G(x)=x^2g(x)-x h(g(x))AAx in Rdot` Which of the following is/are correct? `G^(prime)(1)=2` b. `G^(prime)(1)=3` c.`G^(1)=2` d. `G^(1)=3`

A

G''(1) = 2

B

G'(1) = 3

C

G''(1) = 2

D

G''(1) = 3

Text Solution

Verified by Experts

The correct Answer is:
A, D

`h'(x)=f(x)`
`h''(x)=f'(x)`
`h(1)=0,f(1)=f'(1)=h'(1)=h''(1)=1=g(1)`
'g' is inverse of 'f'
`therefore" "f(g(x)) = x`
`rArr" "f'(g(x)).g'(x)=1`
`rArr" "f'(g(1)).g'(1)=1`
`rArr" "f'(1).g'(1)=1`
`rArr" "g'(1)=1`
`" "G(x)=x^(2)g(x)-xh(g(x))`
`G'(x)=2xg(x)+x^(2)g'(x)-g(g(x))-xh'(g(x)).g'(x)`
`=2xg(x)+x^(2)g'(x)-h(g(x))-x^(2)g'(x)`
`(because h'(x)=f(x)" "therefore h'(g(x))=f(g(x))=x)`
`=2xg(x)-h(g(x))`
`G''(x)=2g(x)+2xg'(x)-h'(g(x)).g'(x)`
`=2g(x)+2xg'(x)-f(g(x)).g'(x)`
`2g(x)+xg'(x)`
`G'(1)=2g(1)-h(g(1))=2g(1)-h(1)=2-0=2`
`G''(1)=2g(1)+g'(1)=3`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

Let f be a twice differentiable function such that f^(primeprime)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Suppose that g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

Let g: RvecR be a differentiable function satisfying g(x)=g(y)g(x-y)AAx , y in R and g^(prime)(0)=aa n dg^(prime)(3)=bdot Then find the value of g^(prime)(-3)dot

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .