Home
Class 12
MATHS
If y = tan^(-1)(u/sqrt(1-u^2)) and x = ...

If `y = tan^(-1)(u/sqrt(1-u^2))` and `x = sec^(-1)(1/(2u^2-1))`, ` u in (0,1/sqrt2)uu(1/sqrt2,1)`, prove that `2dy/dx+ 1 = 0`.

A

y

B

xy

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
C

`y=tan^(-1).(u)/(sqrt(1-u^(2)))`
`rArr" "y=sin^(-1)u`
Also, `x=sec^(-1).(1)/(2u^(2)-1)`
`rArr" "x=cos^(-1)(2u^(2)-1)`
`y=sin^(-1)u`
`therefore" "(dy)/(dx)=(1)/(sqrt(1-u^(2)))`
`=cos^(-1)(2u^(2)-1)`
Also, `(dx)/(du)=(-1)/(sqrt(1-(2u^(2)-1)^(2)))(4u)`
`=-(4u)/(sqrt(1-4u^(4)-1+4u^(2)))`
`-(4u)/(sqrt(4u^(2)(1-u^(2))))=-(2)/(sqrt(1-u^(2)))`
`therefore" "(dy)/(dx)=-(1)/(2)`
`rArr" "2((dy)/(dx))+1=0`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then

If u = tan^(-1)"" (sqrt ( 1+x^2)-1)/(x) and v = tan^(-1) x , find (du)/(dv)

If y=sqrt((1-x)/(1+x)), prove that ((1-x^2)dy)/(dx)+y=0

If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv) .

Find (dy)/(dx) in the following : y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2)) .

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^(2)-1)(dy)/(dx)=1/2y

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

If y=tan^(-1)sqrt((x+1)/(x-1)),t h e n(dy)/(dx)i s (-1)/(2|x|sqrt(x^2-1)) (b) (-1)/(2xsqrt(x^2-1)) 1/(2xsqrt(x^2-1)) (d) none of these