Home
Class 12
MATHS
The differential coefficient of sin^(-1)...

The differential coefficient of `sin^(-1)((5cos x-4s in x)/(sqrt(41)))` is `-2` b.`-1` c. `1` d. `2`

A

`-2`

B

`-1`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
D

Let `u=sin^(-1)((4)/(5)sin2x+(3)/(5)cos2x)=sin^(-1)sin(alpha+2x).`
where `sin alpha=(3)/(5), cos alpha=(4)/(5)`
i.e., `u=alpha+2x.`
Similary, `y=cos^(-1)((5cos x-4 sinx)/(sqrt(41)))`
`=cos^(-1)cos(beta+x),`
Here, `cos beta=(5)/(sqrt(41)), sin beta=(4)/(sqrt(41))`
i.e., `v=beta+x`
`therefore" "(du)/(dv)=((du)/(dx))/((dv)/(dx))=(2)/(1)=2.`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

The differential coefficient of sin^(-1)((4sin2x+3cos2x)/5) with respect to cos^(-1)((5cos x-4sin x)/(sqrt(41))) is -2 b. -1 c. 1 d. 2

Differentiate the following w.r.t.x. tan^(-1) ((sin x)/(1+cos x))

Differentiate the following : y=sin^(-1)((1-x^(2))/(1+x^(2)))

Differentiate the following : y=sin^(-1)((1-x^(2))/(1+x^(2)))

cos(sin^(-1)(x/(sqrt(1+x^(2))))) is :

Differentiate the following w.r.t.x. sin^(-1)((2^(x+1))/(1+4^(x)))

Differentiate the following w.r.t. x; tan^(-1) sqrt((1 - cos x)/(1 + cos x))

Solve cos ( sin^(-1)((x)/(sqrt(1+x^2))))= sin { cot^(-1) (3/4)}

The coefficient of x^(49) in the product (x-1)(x-3)(x-99)i s -99^2 b. 1 c. -2500 d. none of these