Home
Class 12
MATHS
A curve parametrically given asx=t+t^(3)...

A curve parametrically given as`x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is "(dy)/(dx)=(1)/(2)`

A

`(1)/(3)`

B

2

C

3

D

1

Text Solution

Verified by Experts

The correct Answer is:
A, D

`(dy)/(dx)=(2t)/(1+3t^(2))=(1)/(2)`
`rArr" "3t^(2)-4t+1=0`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is "(dy)/(dx)=(1)/(2) ?

A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is "(dy)/(dx)=(1)/(2) ?

A curve in the xy-plane is parametrically given by x=t+t^3a n dy=t^2,w h e r et in R is the parameter. For what value(s) of t is (dy)/(dx)=1/2? 1/3 b. 2 c. 3 d. 1

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof|(dy)/(dx)-x((dy)/(dx))^3| is__________

A curve is represented parametrically by the equations x=t+e^(at) and y=-t+e^(at) when t in R and a > 0. If the curve touches the axis of x at the point A, then the coordinates of the point A are

The curve described parametrically by x=t^2+t+1 , and y=t^2-t+1 represents. (a)a pair of straight lines (b) an ellipse (c)a parabola (d) a hyperbola

Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., x=x(t), y=y(t), then the area of the figure is evaluated by one of the three formulas : S=-int_(alpha)^(beta) y(t)x'(t)dt, S=int_(alpha)^(beta) x(t)y'(t)dt, S=(1)/(2)int_(alpha)^(beta)(xy'-yx')dt, Where alpha and beta are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t. If the curve given by parametric equation x=t-t^(3), y=1-t^(4) forms a loop for all values of t in [-1,1] then the area of the loop is

If x=a (cos t +t sin t)" and "y= a (sin t -t cos t) , find (d^(2)y)/(dx^(2)) .