Home
Class 12
MATHS
If y=x^(logx)^(("log"(logdotx))),t h e n...

If `y=x^(logx)^(("log"(logdotx))),t h e n(dy)/(dx)i s` `y/x(1n x^(oox-1))+21 nx1n(1nx))` `y/x(logx)^("log"(logx))(2log(logx)+1)` `y/(x1nx)[(1nx)^2+21 n(1nx)]` `y/x(logy)/(logx)[2log(logx)+1]`

A

`(y)/(x)(lnx^(logx-1))+2lnxln(lnx)`

B

`(y)/(x)(logx)^(log(logx))(2log(logx)+1)`

C

`[(lnx)^(2)+2ln(lnx)]`

D

`(y)/(x)(logy)/(logx)(2log(logx)+1)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

`y=x^((logx)^(log(logx)))`
`rArr" "logy=(logx)(logx)^(log(logx))" (1)"`
Taking log on both sides, we get
`log(logy)=log(logx)+log(logx)log(logx)`
Differentiating w.r.t., we get
`(1)/(logy).(1)/(y)(dy)/(dx)=(1)/(xlogx)+(2log(logx))/(logx)(1)/(x)`
`=(2log(logx)+1)/(xlogx)`
`rArr" "(dy)/(dx)=(y)/(x).(logy)/(logx)(2log(logx)+1)`
Substituting the value of log y from (1), we get
`(dy)/(dx)=(y)/(x)(logx)^(log(logx))(2log(logx)+1)`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a) y/x(1n x^(oox-1))+21 nx1n(1nx)) (b) y/x(logx)^("log"(logx))(2log(logx)+1) (c) y/(x1nx)[(1nx)^2+21 n(1nx)] (d) y/x(logy)/(logx)[2log(logx)+1]

int(1)/(x(logx)log(logx))dx=

(dy)/(dx)+(y)/(xlogx)=(sin2x)/(logx)

If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s (a) x/(2y-1) (b) x/(2y+1) (c) 1/(x(2y-1)) (d) 1/(x(1-2y))

If y=sqrt(log{sin((x^2)/3-1)}) , t h e n find (dy)/(dx)dot

Solve x((dy)/(dx))=y(logy-logx+1)

x(dy)/(dx)+2y-x^(2)logx=0

If y = (e^(x) + logx + 1)^(50) find (dy)/(dx) .

find dy/dx if y = (logx)^(sin^(-1)x

Solve: 4^((log_2logx))=logx-(logx)^2+1 (base is e)