Home
Class 12
MATHS
For the curve sinx+siny=1 lying in first...

For the curve `sinx+siny=1` lying in first quadrant. If `lim_(xrarr0) x^(alpha)(d^(2)y)/(dx^(2))` exists and non-zero than `2alpha=`

A

3

B

4

C

5

D

1

Text Solution

Verified by Experts

The correct Answer is:
A

`sinx+siny=1`
`rArr" "cosx+cosy y'=0`
`rArr" "-sinx+cosy y''+(y')(-siny)=0`
`rArr" "y''=(y'siny+sinx)/(cosy)`
`=((-(cosx)/(cosy))^(2)siny+sinx)/(cosy)`
`=(sinxcos^(2)y+cos^(2)xsiny)/(cos^(3)y)`
Putting `sin x=t, sin y=1-t`, we get
`y''=(t^(-3//2)(1-t+t^(2)))/((2-t)^(3//2))`
`rArr" "alpha=(3)/(2)`
`rArr" "2alpha=3`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

What is lim_(xrarr0)[e^(x^2]-1]/(x^2)

Compute lim_(xrarr0)[(x^(2)+x)/(x)+4x^(3)+3]

Find lim_(xrarr0)[(x^3 +x^2)/(2x^2) +3x^2 -4]

lim_(xrarr0)[xe^(2x) +tanx]/x is :

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

Find lim_(xrarr0)(xe^x -sin2x)/(2x)

lim_(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

The value of lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

lim_(xrarr0) (log(x^(x^(2))+2sqrtx))/(tansqrtx) is equal to