Home
Class 12
MATHS
If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(...

If `y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/d=` `y` b. `y/3` c. `y/9` d. `y/(27)`

A

y

B

`(y)/(3)`

C

`(y)/(9)`

D

`(y)/(27)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have
`y^(3)-y=2x`
Differentiating both sides w.r.t. x, we get
`(3y^(2)-1)(dy)/(dx)=2 rArr (dy)/(dx)=(2)/(3y^(2)-1)" (1)"`
Again, differentiating both sides w.r.t. x, we get
`(d^(2)y)/(dx^(2))=(-2.6y((dy)/(dx)))/((3y^(2)-1))`
Using (1), we get
`(d^(2)y)/(dx^(2))=(-2y)/((3y^(2)-1)^(3))" (2)"`
Now,
`(x^(2)-(1)/(27))(d^(2)y)/(dx^(2))+(xdy)/(dx)`
`=(x^(2)-(1)/(27))((-24y)/((3y^(2)-1)^(2)))+(2x)/((3y^(2)-1))`
`=(y^(2)((y^(2)-1)^(2))/(4)-(1)/(27))((-24y)/((3y^(2)-1)^(3)))+(y(y^(2)-1))/(3y^(2)-1)`
`" "(because y^(3)-y=2x)`
`=({27y^(2)(y^(2)-1)^(2)-4})/(108)((-24y))/((3y^(2)-1))+(y(y^(2)-1))/(3y^(2)-1)`
`=(y)/(9){(-54y^(2)(y^(2)-1)^(2)+8)/((3y^(2)-1)^(3))+(9(y^(2)-1))/(3y^(2)-1)}`
`=(y)/(9){(-2(1+alpha)(alpha-2)^(2)+8)/(alpha^(3))}+(3(alpha-2))/(alpha)`
`" where "alpha=3y^(2)-1`
`=(y)/(9)`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If y=2x^(n+1)+3xn ,then x^2d^2y/dx^2 is

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y^2=P(x) , then 2d/dx(y^3(d^2y/dx^2))

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If x y+y^2=tanx+y ,t h e n(dy)/(dx)dot

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) (x(dy)/(dx)-y) ^2 (b) x (dy/dx)-y (c) y(dy/dx)-x (d) (y(dy/dx)-x)^2

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0 . Hence find y_(2) when x=0

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y= (cos^(-1) x)^2 , prove that (1-x^2) (d^2y)/(dx^2) - x(dy)/(dx) -2 =0 , Hence find y_2 when x=0 .