Home
Class 12
MATHS
Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0...

Let `f(x)=(g(x))/x w h e nx!=0` and `f(0)=0.` If `g(0)=g^(prime)(0)=0a n dg^(0)=17` then `f(0)=` `3//4` b. `-1//2` c. `17//3` d. `17//2`

A

`3//4`

B

`-1//2`

C

`17//3`

D

`17//2`

Text Solution

Verified by Experts

The correct Answer is:
D

`f'(0)=underset(xrarr0)(lim)(f(x)-f(0))/(x-0)`
`=underset(xrarr0)(lim)(f(x))/(x)`
`=underset(xrarr0)(lim)(g(x))/(x^(2))`
`=underset(xrarr0)(lim)(g'(x))/(2x)`
`=(g''(0))/(2)=(17)/(2)`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f((x+y)/2)=(f(x)+f(y))/2fora l lr e a lxa n dy If f^(prime)(0) exists and equals -1a n df(0)=1,t h e n f i n d f(2)dot

If g(x)=(x^(3) - 2x + 4) f(x) and f(0) = 3 and lim(xrarr0) (f(x)-3)/x = 2 then g'(0) is:

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

If g(x) = (x^2 + 2x +3) f(x) and f(0) = 5 and underset( x to 0) (lim) (f(x) -5)/(x) =4 then g'(0) is….......... .

If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2 (b) 8 (c) 16 (d) 4

If g(x) = (x^(2)+2x+3), f(x) and f(0)=5 and lim_(xrarr0)(f(x)-5)/x = 4 then g'(o) is

If f: RvecR be a differen tiable function atg x=0 satisfying f(0)=0a n df^(prime)(0)=1 , then the value of (lim)_(xvec0)1/xsum_(n=1)^oo(-1)^nf(x/n)= e b. -log2 c. 0 d. 1

f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)' must be