Home
Class 12
MATHS
A functionf: Rvec[1,oo) satisfies the eq...

A function`f: Rvec[1,oo)` satisfies the equation `f(x y)=f(x)f(y)-f(x)-f(y)+2.` If differentiable on `R-{0}a n df(2)=5,f^(prime)(x)=(f(x)-1)/xdotlambdat h e nlambda=` `2^(prime)f(1)` b. `3f^(prime)(1)` c. `1/2f^(prime)(1)` d. `f^(prime)(1)`

A

`2f'(1)`

B

`3f'(1)`

C

`(1)/(2)f'(1)`

D

`f'(1)`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(xy)=f(x)f(y)-f(x)-f(y)+2" (1)"`
`f'(x)=underset(hrarr0)(lim)(f(x+h)-f(x))/(h)`
`=underset(hrarr0)(lim)(f{x(1+(h)/(x))}-f(x))/(h)(x ne 0" given"")`
`=underset(hrarr0)(lim)(f(1+(h)/(x))-2)/(h).(f(x)-1)/(x)`
Putting x = 1, y = 2 in (1), we get f(1) = 2
`therefore" "f'(x)=f'(1).(f(x)-1)/(x)`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

A function f: RvecR satisfies the equation f(x)f(y)-f(x y)=x+yAAx ,y in Ra n df(1)>0 , then f(x)f^(-1)(x)=x^2-4 b. f(x)f^(-1)(x)=x^2-6 c. f(x)f^(-1)(x)=x^2-1 d. none of these

A function y=f(x) satisfies the differential equation (d y)/(d x)+x^2 y=-2 x, f(1)=1 . The value of |f^( prime prime)(1)| is

Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x=0. Then find f^(prime)(0)dot

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If f(x-y),f(x)f(y),a n df(x+y) are in A.P. for all x , y ,a n df(0)!=0, then (a) f(4)=f(-4) (b) f(2)+f(-2)=0 (c) f^(prime)(4)+f^(prime)(-4)=0 (d) f^(prime)(2)=f^(prime)(-2)

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot