Home
Class 12
MATHS
Letf(3)=4 and f'(3)=5. Then lim(xrarr3) ...

Let`f(3)=4 and f'(3)=5`. Then `lim_(xrarr3) [f(x)]` (where [.] denotes the greatest integer function) is Option 1: 3 Option 2: 4 Option 3: 5 Option 4: not exist

A

3

B

4

C

5

D

non-existent

Text Solution

Verified by Experts

The correct Answer is:
D

`f'(3)=underset(hrarr0)(lim)(f(3+4)-f(3))/(h)=underset(hrarr0)(lim)(f(3-4)-f(3))/(-h)`
`therefore" "f(3+h)-f(3)=5h+h=epsilon_(1)`
where `epsilon_(1)rarr0` when `h rarr0`
and `f(3-h)-f(3)=-5h+h=epsilon_(2)`
where `epsilon_(2)rarr0` when `hrarr0`
`therefore" "f(3+h)=f(3)+5h+h=epsilon_(1)=4+5h+hepsilon_(1)`
`therefore" "[f(3+h)]=[4+5h+h epsilon_(1)]=4" when " h gt 0 and h " is very small."`
`therefore" "underset(hrarr0)(lim)[f(3+h)]=4`
Similarly, `[f(3-h)]=[4-5h+hepsilon_(2)]=[4-h(5-epsilon_(2)]=3`
When `hgt0` and h is very small implying `epsilon_(2)` is very small.
`therefore" "underset(hrarr0)(lim)[f(3-h)=3 ne 4=underset(hrarr0)(lim)[f(3+h)]`
`therefore" "underset(xrarr3)(lim)[f(x)]` does not exist.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Find the value of lim_(xrarr3) [x] = ______ where [.] denotes the greatest integer

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

If f(x)={x+1/2, x<0 2x+3/4,x >=0 , then [(lim)_(x->0)f(x)]= (where [.] denotes the greatest integer function)

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the range of f(x) is

Let f(x)={1+|x|,x<-1[x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2.3)}dot

The domain of the function f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x]) (where [] represents the greatest integer function is

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

The number of points on the real line where the function f(x) = log_(|x^2-1|)|x-3| is not defined is Option 1: 4 Option 2: 5 Option 3: 6 Option 4: 7