Home
Class 12
MATHS
If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^...

If `f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c)^3,1]|` then `f'(x)=lambda|[(x-a)^4,(x-a)^3,1] , [(x-b)^4, (x-b)^3, 1] , [(x-c)^4, (x-c)^3,1]|`. Find the value of `lambda`

A

1

B

2

C

3

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=|((x-a)^(4),(x-a)^(3),1),((x-b)^(4),(x-b)^(3),1),((x-c)^(4),(x-c)^(3),1)|`
`f'(x)=|(4(x-a)^(3),(x-a)^(3),1),(4(x-b)^(3),(x-a)^(3),1),(4(x-c)^(3),(x-a)^(3),1)|+|((x-a)^(4),3(x-a)^(2),1),((x-b)^(4),3(x-b)^(2),1),((x-c)^(4),3(x-c)^(2),1)|+|((x-a)^(4),(x-a)^(3),0),((x-b)^(4),(x-b)^(3),0),((x-c)^(4),(x-c)^(3),0)|`
`=3|((x-a)^(4),(x-a)^(2),1),((x-b)^(4),(x-b)^(2),1),((x-c)^(4),(x-c)^(2),1)|`
`therefore" "lambda=3`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If |[1,x,x^2] , [x,x^2,1] , [x^2,1,x]|=3 then find the value of |[x^3-1, 0, x-x^4] , [0,x-x^4, x^3-1] , [x-x^4, x^3-1, 0]|

If |[1 , x, x^2],[ x , x^2 , 1],[ x^2 , 1 , x]|=3 , then the value of |[x^(3)-1, 0 , x-x^4],[ 0, x-x^(4) , x^(3)-1],[ x-x^(4) , x^(3)-1 , 0]|

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If f(x)=2/(x-3),g(x)=(x-3)/(x+4) , and h(x)=-(2(2x+1))/(x^2+x-12) then lim_(x->3)[f(x)+g(x)+h(x)] is (a) -2 (b) -1 (c) -2/7 (d) 0

If f'(x)=3x^2 -4x+5" and "f(1)=3 , then find f(x) .

If f(x)= |1x x+1 2x x(x-1)(x+1) x3 x(x-1) x(x-1)(x-2) (x+1)x(x-1)| then f(500) is equal to 0 b. 1 c. 500 d. -500

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

If (x_1-x_2)^2+(y_1-y_2)^2=a^2 , (x_2-x_3)^2+(y_2-y_3)^2=b^2 , (x_3-x_1)^2+(y_3-y_1)^2=c^2 , and k|[x_1,y_1, 1],[x_2,y_2, 1],[x_3,y_3, 1]|=(a+b+c)(b+c-b)(c+a-b)xx(a+b-c) , then the value of k is 1 b. 2 c. 4 d. none of these

Find f'(x) if f(x) = cos^(-1) ( 4x^3 - 3x) .