Home
Class 12
MATHS
Suppose |f^(prime)(x)f(x)f^(x)f^(prime)(...

Suppose `|f^(prime)(x)f(x)f^(x)f^(prime)(x)|=0"w h e r ef"("x")` is continuously differentiable function with `f^(prime)(x)!=0` and satisfies `f(0)=1` and `f^(prime)(0=2)` then `(lim)_(xvec0)(f(x)-1)/x` is `1//2` b. `1` c. `2` d. `0`

A

1

B

2

C

`1//2`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`|(f'(x),f(x)),(f''(x),f'(x))|=0`
`rArr" "f'(x)f'(x)-f(x).f''(x)=0`
`rArr" "((f(x))^(2)-f(x)f''(x))/((f'(x))^(2))=0`
`rArr" "(d)/(dx)[(f(x))/(f'(x))]=0`
`rArr" "(f(x))/(f'(x))=C" (i)"`
Put `x=0, (f(0))/(f'(0))=C rArr C=(1)/(2)`
Hence `(f(x))/(f'(x))=(1)/(2)`
From (i), `2f(x)=f'(x)`
`therefore" "(f'(x))/(f(x))=2`
`therefore" "(d)/(dx)(logf(x))=2`
`therefore" "log(f(x))=2x+k`
Putting x = 0, we get k = 0
`rArr" "f(x)=e^(2x)`
`rArr" "underset(xrarr0)(lim)(e^(2x)-1)/(x)=2`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 is continuously differentiable function with f^(prime)(x)!=0 and satisfies f(0)=1 and f'(0)=2 then (lim)_(x->0)(f(x)-1)/x is 1//2 b. 1 c. 2 d. 0

If f: RvecR be a differen tiable function atg x=0 satisfying f(0)=0a n df^(prime)(0)=1 , then the value of (lim)_(xvec0)1/xsum_(n=1)^oo(-1)^nf(x/n)= e b. -log2 c. 0 d. 1

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

Given f^(prime)(1)=1"and"d/(dx)(f(2x))=f^(prime)(x)AAx > 0 .If f^(prime)(x) is differentiable then there exies a number c in (2,4) such that f''(c) equals

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2. f(1)=1, then

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x+1)),AAx > -1. If f(0)=5, then f(x) is