Home
Class 12
MATHS
Suppose f: RvecR^+ be a differentiable f...

Suppose `f: RvecR^+` be a differentiable function such that `3f(x+y)=f(x)f(y)AAx ,y in R` with `f(1)=6.` Then the value of `f(2)` is `6` b. `9` c. `12` d. `15`

A

6

B

9

C

12

D

15

Text Solution

Verified by Experts

The correct Answer is:
C

`3f(x+y)=f(x)f(y)" (i)"`
`f'(x)=underset(hrarr0)(lim)(f(x+h)-f(x))/(h)`
`=underset(hrarr0)(lim)((f(x).f(h))/(3)-f(x))/(h)" (using f rule)"`
`=underset(hrarr0)(lim)(f(x).f(h)-3f(x))/(3h)`
`rArr" "f'(x)=underset(hrarr0)(lim)(f(x))/(3).([f(h)-3])/(h)`
`"Put "x=0, y=1`
`therefore" "3f(1)=f(0)f(1)`
`therefore" "f(0)=3`
`therefore" "f'(x)=(f(x))/(3)underset(hrarr0)(lim)(f(h)-f(0))/(h)`
`rArr" "f'(x)=(f(x))/(3)f'(0),`
`rArr" "3.(f'(x))/(f(x))=f'(0)=k("say")`
`rArr" Integrating, we get "3log(f(x))=kx+C,`
`"Using "f(0)=3 rArr 3log 3=C`
`rArr" "3log(f(x))=kx+3log3`
`rArr" "3log((f(x))/(3))=kx,`
Using `f(1)=6 rArr 3log2=k`
`rArr" "f(x)=3.2^(x)`
`rArr" "f(2)=12`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos

Similar Questions

Explore conceptually related problems

If f is a real valued function such that f(x+y) = f(x) + f(y) and f(1)=5, then the value of f(100) is

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R. The value of f(4) is

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

Let f:R->R be a continuous function such that |f(x)-f(y)|>=|x-y| for all x,y in R ,then f(x) will be

Let f: RvecR be a one-one onto differentiable function, such that f(2)=1a n df^(prime)(2)=3. The find the value of ((d/(dx)(f^(-1)(x))))_(x=1)

Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R. The minimum value of f(x) is

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

Let f: RvecR be a continuous and differentiable function such that (f(x^2+1))^(sqrt(x))=5forAAx in (0,oo), then the value of (f((16+y^2)/(y^2)))^(4/(sqrt(y)))fore a c hy in (0,oo) is equal to (a) 5 (b) 25 (c) 125 (d) 625