Home
Class 12
MATHS
If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/...

If `int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x-1)))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C` then

A

a) `u=e^(x)+e^(-x)`

B

b) `u=e^(x)-e^(-x)`

C

c) `t=e^(x)+e^(-x)`

D

d) `t=e^(x)-e^(-x)`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`I=int{(e^(2x)-e^(-2x))ln(e^(x)+e^(-x))-(e^(2x)-e^(-2x))ln(e^(x)-e^(-x))}dx`
`=int tln t dt- int u ln u du ("where t"=e^(x)+e^(-x) and u=e^(x)-e^(-x))`
`=(t^(2))/(2)ln t-(t^(2))/(4)-(u^(2))/(2)ln u+(u^(2))/(4)+C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(e^x)/(e^(2x)+4)dx

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

int_(1)^(2)(1/(x)-(1)/(2x^(2)))e^(2x)dx

Find int(e^(x))/(sqrt(4-e^(2x)))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

Evaluate int(e^(x))/(sqrt(12-4e^(x)-e^(2x)))dx

Evaluate int(2e^(x)(1+x)dx)/(cos^(2)(e^(x)x))

int(dx)/(sqrt(2e^(x)-1))=

Evaluate int_(0)^(1) (e^(x))/( 1+ e^(2x)) dx