If `int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x-1)))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C` then
A
a) `u=e^(x)+e^(-x)`
B
b) `u=e^(x)-e^(-x)`
C
c) `t=e^(x)+e^(-x)`
D
d) `t=e^(x)-e^(-x)`
Text Solution
Verified by Experts
The correct Answer is:
B, C
`I=int{(e^(2x)-e^(-2x))ln(e^(x)+e^(-x))-(e^(2x)-e^(-2x))ln(e^(x)-e^(-x))}dx` `=int tln t dt- int u ln u du ("where t"=e^(x)+e^(-x) and u=e^(x)-e^(-x))` `=(t^(2))/(2)ln t-(t^(2))/(4)-(u^(2))/(2)ln u+(u^(2))/(4)+C`