Home
Class 7
MATHS
State True or False: (a^(4))/(b^(3))=(a+...

State True or False: `(a^(4))/(b^(3))=(a+a+a+a)/(b+b+b)`

A

True

B

False

C

not sure

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \((\frac{a^{4}}{b^{3}}) = \frac{a+a+a+a}{b+b+b}\) is true or false, we will analyze both sides of the equation step by step. ### Step 1: Analyze the Left-Hand Side (LHS) The left-hand side of the equation is: \[ \frac{a^{4}}{b^{3}} \] This can be expressed as: \[ \frac{a \cdot a \cdot a \cdot a}{b \cdot b \cdot b} \] This means we have four \(a\)s multiplied together in the numerator and three \(b\)s multiplied together in the denominator. ### Step 2: Analyze the Right-Hand Side (RHS) The right-hand side of the equation is: \[ \frac{a + a + a + a}{b + b + b} \] Calculating the numerator: \[ a + a + a + a = 4a \] And for the denominator: \[ b + b + b = 3b \] So, the right-hand side simplifies to: \[ \frac{4a}{3b} \] ### Step 3: Compare LHS and RHS Now we compare both sides: - LHS: \(\frac{a^{4}}{b^{3}}\) - RHS: \(\frac{4a}{3b}\) ### Step 4: Determine if they are equal To check if \(\frac{a^{4}}{b^{3}} = \frac{4a}{3b}\), we can cross-multiply: \[ a^{4} \cdot 3b = 4a \cdot b^{3} \] This simplifies to: \[ 3a^{4}b = 4ab^{3} \] Dividing both sides by \(ab\) (assuming \(a \neq 0\) and \(b \neq 0\)): \[ 3a^{3} = 4b^{2} \] This equation does not hold true for all values of \(a\) and \(b\). Therefore, the two sides are not equal. ### Conclusion Since the left-hand side \(\frac{a^{4}}{b^{3}}\) is not equal to the right-hand side \(\frac{4a}{3b}\), we conclude that the statement is **False**. ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|7 Videos
  • EXPONENTS AND POWERS

    NCERT EXEMPLAR|Exercise EXERCISE|136 Videos
  • DATA HANDLING

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |3 Videos
  • FRACTIONS AND DECIMALS

    NCERT EXEMPLAR|Exercise EXERCISE (FIND THE ERROR)|3 Videos

Similar Questions

Explore conceptually related problems

State True or False : 3^(4)gt4^(3)

State True or False : (-3)^(4)=-12

State True or False: a^(b)gtb^(a) is true. If a=3 and b=4, but false if a=2 and b=3.

State True or False: (3a - b + 3) - (a + b) is a binomial.

State True or False: If u=x-a and v= y-b then b_(xy)= b_(uv) .

State True or False: If b_(yx)=1.5 and b_(xy)=1/3 then r = 1/2 . The given data is consistent.

State True or False: 5a and 5b are unlike terms.

State True or False: If b_(xy) lt 0 and b_(yx) lt 0 then ‘r’ is gt0

State True or False: If b : a = c : d, then a, b, c, d are in proportion.