Home
Class 12
MATHS
If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , ...

If `sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y)` , then prove that `(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt((1-y^(2))/(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART III) QUESTION FOR PRACTICE (1 MARK) |8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART III) QUESTION FOR PRACTICE (4 MARK) |13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise (PART II) QUESTION FOR PRACTICE (1 MARK) |26 Videos
  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP C (ANSWER ANY ONE QUESTIONS)|11 Videos
  • DETERMINANTS

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE |39 Videos

Similar Questions

Explore conceptually related problems

If y sqrt( 1 - x^(2) ) + x sqrt ( 1 - y^(2) ) = 1 , prove that (dy)/( dx) = - sqrt((1-y^2)/( 1-x^2)) .

If y=[x+sqrt(x^(2)+a^(2))]^(n) , then prove that (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))

If y=(x)/(x+2) then prove that x(dy)/(dx)=(1-y)y .

If sqrt(1-x^4) + sqrt(1-y^4) =k(x^2 - y^2) then show that dy/dx = {x sqrt(1-y^4)}/{y sqrt(1-x^4)}

Find (dy)/(dx) if y=(1)/(sqrt(a^(2)-x^(2)))

If y=x^(x) , then prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

Prove that y=tan(x+y) , then (dy)/(dx)=(1+y^(2))/(-y^(2))