Home
Class 12
MATHS
Prove that for any three vectors vec(a),...

Prove that for any three vectors `vec(a), vec(b)` and `vec(c), [vec(a) + vec(b) vec(b) + vec(c) vec(c) + vec(a)] = 2 [vec(a)vec(b)vec(c)]`

Text Solution

Verified by Experts

The correct Answer is:
`2[abc]`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Odisha Bureau.s Textbook Solutions (Additional Exercise)|15 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Chapter Practice (Very Short Answer Type Questions)|21 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Odisha Bureau.s Textbook Solutions (Exercise 12(c))|28 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

For any three vectors vec(a), vec(b) and vec(c) , show that vec(a) - vec(b), vec(b) - vec(c) , vec(c) - vec(a) are coplanar.

For any three vectors vec(a), vec(b) and vec(c) , prove that vec(a) xx (vec(b) - vec(c)) = (vec(a) xx vec(b)) - (vec(a) xx vec(c)) .

Simplify [vec(a)-vec(b)vec(b)-vec(c)vec(c)-vec(a)] .

For any three vectors vec(a), vec(b) and vec(c) , evaluate vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) .

Prove that [vec(a)vec(b)vec(c) + vec(d)] = [vec(a)vec(b)vec(c)] + [vec(a) vec(b)vec(d)] .

Prove that the four points with position vectors 2vec(a) + 3vec(b) - vec(c), vec(a) - 2vec(b) + 3vec(c) " , "3vec(a) + 4vec(b) - 2vec(c) and vec(a) - 6vec(b) + 6vec(c) are coplanar.

Prove that vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) = vec(0)

ARIHANT PUBLICATION-VECTOR ALGEBRA -Odisha Bureau.s Textbook Solutions (Exercise 12(d))
  1. Each question given below has four possible answers out of which only ...

    Text Solution

    |

  2. (-veca).vecbxx(-vecc)) =

    Text Solution

    |

  3. Each question given below have four possible answers, out of which onl...

    Text Solution

    |

  4. Find the scalar triple product b.(c xx a) where a, b and c are respect...

    Text Solution

    |

  5. Find the scalar triple product b.(c xx a) where a, b and c are respect...

    Text Solution

    |

  6. Find the volume of the parallelopiped whose sides given by the vectors...

    Text Solution

    |

  7. Find the volume of the Parallelepiped whose sides are given by the vec...

    Text Solution

    |

  8. Show that the following vectors are coplanar. hat(i) - 2hat(j) + 2ha...

    Text Solution

    |

  9. Show that the following vectors are coplanar. hat(i) + 2hat(j) + 3h...

    Text Solution

    |

  10. Find the value of lambda so that the three vectors are coplanar. hat...

    Text Solution

    |

  11. Find the value of lambda so that the three vectors are co-planar. (2,-...

    Text Solution

    |

  12. If veca, vecb and vecc are mutually perpendicular, show that [veca.(ve...

    Text Solution

    |

  13. Prove that for any three vectors vec(a), vec(b) and vec(c), [vec(a) + ...

    Text Solution

    |

  14. Prove that [(veca xx vecb,vecb xx vecc,vecc xx veca)] = [(veca,vecb,ve...

    Text Solution

    |

  15. For veca = hat(i) + hat(j), vecb = -hat(i) + 2hat(k), vecc = hat(j) + ...

    Text Solution

    |

  16. Prove that veca xx (vecb xx vecc) + vecb xx (vecc xx veca) + vecc xx (...

    Text Solution

    |

  17. If hat(a), hat(b), hat(c) are unit vectors and hat(a) xx (hat(b) xx ha...

    Text Solution

    |