Home
Class 12
MATHS
Prove that the four points with position...

Prove that the four points with position vectors `2vec(a) + 3vec(b) - vec(c), vec(a) - 2vec(b) + 3vec(c) " , "3vec(a) + 4vec(b) - 2vec(c)` and `vec(a) - 6vec(b) + 6vec(c)` are coplanar.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Chapter Practice (Very Short Answer Type Questions)|21 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Chapter Practice (Short Answer Type Questions)|8 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Odisha Bureau.s Textbook Solutions (Exercise 12(d))|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

Prove that for any three vectors vec(a), vec(b) and vec(c), [vec(a) + vec(b) vec(b) + vec(c) vec(c) + vec(a)] = 2 [vec(a)vec(b)vec(c)]

For any three vectors vec(a), vec(b) and vec(c) , show that vec(a) - vec(b), vec(b) - vec(c) , vec(c) - vec(a) are coplanar.

For any three vectors vec(a), vec(b) and vec(c) , prove that vec(a) xx (vec(b) - vec(c)) = (vec(a) xx vec(b)) - (vec(a) xx vec(c)) .

For any three vectors vec(a), vec(b) and vec(c) , evaluate vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) .

Prove that vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) = vec(0)

Prove that [vec(a)vec(b)vec(c) + vec(d)] = [vec(a)vec(b)vec(c)] + [vec(a) vec(b)vec(d)] .