Home
Class 12
MATHS
Show that the projection vector of vec(b...

Show that the projection vector of `vec(b)` on `vec(a)`, `a ne 0` is `((vec(a).vec(b))/(|vec(a)|^(2)))vec(a)`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Chapter Practice (Long Answer Type Questions)|8 Videos
  • VECTOR ALGEBRA

    ARIHANT PUBLICATION|Exercise Chapter Practice (Very Short Answer Type Questions)|21 Videos
  • THREE-DIMENSIONAL GEOMETRY

    ARIHANT PUBLICATION|Exercise Chapter Practice|34 Videos

Similar Questions

Explore conceptually related problems

Prove that |vec(a)-vec(b)|ge|vec(a)|-|vec(b)| .

Show that the vector area of the triangle whose vertices have position vectors vec(a),vec(b),vec(c ) , is 1/2(vec(a)xxvec(b)+vec(b)xxvec(c )+vec(c )xxvec(a)) .

Prove that for any three vectors vec(a), vec(b) and vec(c), [vec(a) + vec(b) vec(b) + vec(c) vec(c) + vec(a)] = 2 [vec(a)vec(b)vec(c)]

For any three vectors vec(a), vec(b) and vec(c) , show that vec(a) - vec(b), vec(b) - vec(c) , vec(c) - vec(a) are coplanar.

Show that (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xxvec(b)) .

For any three vectors vec(a), vec(b) and vec(c) , prove that vec(a) xx (vec(b) - vec(c)) = (vec(a) xx vec(b)) - (vec(a) xx vec(c)) .

Prove that the four points with position vectors 2vec(a) + 3vec(b) - vec(c), vec(a) - 2vec(b) + 3vec(c) " , "3vec(a) + 4vec(b) - 2vec(c) and vec(a) - 6vec(b) + 6vec(c) are coplanar.