Home
Class 12
MATHS
Prove the "sin"^(-1) sqrt((x-q)/(p-q))="...

Prove the `"sin"^(-1) sqrt((x-q)/(p-q))="cos"^(-1)`sqrt((p-x)/(p-q))="cot"^(-1) sqrt((p-x)/(x-q))`

Text Solution

Verified by Experts

The correct Answer is:
`cot^(-1)sqrt((p-x)/(x-q))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2018

    ARIHANT PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS (ANSWER ANY THREE QUESTIONS)|38 Videos
  • PROBABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE(LONG ANSWER TYPE QUESTIONS)|17 Videos
  • QUESTION PAPER 2019

    ARIHANT PUBLICATION|Exercise Group C (30 Marks) |13 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)sqrt((x-q)/(p-q))=cos^(-1)sqrt((p-x)/(p-q))=cot^(-1)sqrt((p-x)/(x-q)) .

Show that sin^(-1)sqrt(frac[x-q][p-q])=cos^(-1)sqrt(frac[p-x][p-q])=cot^(-1)sqrt(frac[p-x][x-q])

Prove that 1/2cos^-1x=sin^-1sqrt((1-x)/2)=cos^-1sqrt((1+x)/2) .

Prove statement "cot"^(-1)(pq+1)/(p-q) +"cot"^-1(qr+1)/(q-r) +"cot"^(-1) (rp+1)/(r-p)=0

Prove the following "tan"^(-1)((1-x)/(1+x))-"tan"^(-1)((1-y)/(1+y))="sin"^(-1)((y-x)/(sqrt(1+x^(2))sqrt(1+y^(2)))) .

Prove that tan^(-1)sqrt(x) =(1)/(2) cos^(-1)((1-x)/(1+x)), x in (0, 1) .

Directions Prove the following "tan"^(-1)((sqrt(1+"cos"x)+sqrt(1-"cos"x))/(sqrt(1+"cos"x)-sqrt(1-"cos"x)))=pi/(4)+x/(2) , if piltxlt(3pi)/(2) .

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

Prove statement "cos"" tan"^(-1) " cot sin"^(-1) x =x

Prove that "tan"^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/(4)+1/(2)"cos"^(-1)x^(2) .