Home
Class 12
MATHS
Prove that cos^(-1)(frac[b+acosx][a+bcos...

Prove that `cos^(-1)(frac[b+acosx][a+bcosx])=2tan^(-1)(sqrt(frac[a-b][a+b])tanfrac[x][2])`

Text Solution

Verified by Experts

The correct Answer is:
`= cos^(-1) ((a cos x + b)/(a + b cos x)) = LHS`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2019

    ARIHANT PUBLICATION|Exercise Group C (30 Marks) |13 Videos
  • QUESTION PAPER 2019

    ARIHANT PUBLICATION|Exercise Group C (30 Marks) |13 Videos
  • QUESTION PAPER 2018

    ARIHANT PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS (ANSWER ANY THREE QUESTIONS)|38 Videos
  • QUESTION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP C (ANSWER ANY ONE QUESTIONS)|13 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1) ((b + a cos x)/( a + b cos x)) = 2 tann^(-1) (sqrt((a - b)/( a + b)) tan "" (x)/(2))

Prove that : "cos"^(-1) ((b+a "cos"x)/(a+b "cos"x)) =2"tan"^(-1)(sqrt((a-b)/(a+b)) "tan" x/2)

Show that sin^(-1)sqrt(frac[x-q][p-q])=cos^(-1)sqrt(frac[p-x][p-q])=cot^(-1)sqrt(frac[p-x][x-q])

Prove that sin^(-1)(frac[sqrt(1+x)+sqrt(1-x)][2])=frac[pi][4]+frac[1][2]cos^(-1)x,0ltxlt1

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Differentiate tan^(-1) frac cos x( 1+ sin x)

Show that sin^(-1)frac[12][13]+cos^(-1)frac[4][5]+tan^(-1)frac[63][16]=pi

Solve cos^(-1)x+sin^(-1)frac[x][2]=frac[pi][6] .

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

Integrate int(frac[x-1][2x+1])dx