Home
Class 12
MATHS
If A = [{:(2),(3),(4):}] find A A^(T), w...

If `A = [{:(2),(3),(4):}]` find `A A^(T),` where `A ^(T)` is transpose of matrix A.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 3

    ARIHANT PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS |25 Videos
  • SAMPLE PAPER 3

    ARIHANT PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS |13 Videos
  • SAMPLE PAPER 2

    ARIHANT PUBLICATION|Exercise Long Answer Type Questions|13 Videos
  • SAMPLE PAPER 4

    ARIHANT PUBLICATION|Exercise Long Answer Type Questions|13 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,-4),(1,-1):}] , then show that (A-A') is a skew - symmetric matrix , where A' is the transpose of matrix A.

For the matrix A=[{:(3,1),(7,5):}] , find a and b such that A^(2)+aI=bA , where I is a 2xx2 identity matrix .

If A= [[ 3,-5,],[-4,2,]] ,show that A^2-5A-14I=O, where I is a unit matrix of Oder 2.

If A=[{:(1,-2,2),(3,1,-1):}]andB=[{:(2,4),(1,2),(3,-1):}] , then verify that (AB)^(T)=B^(T)A^(T) .

Find the transpose of the matrix [[3,-2,-4],[3,-2,-5],[-1,1,2]] .

Find the inverse of the matrix [[1,2],[3,4]]

If A=[(1,2),(2,3),(3,4)]and B=[(2,3,0),(1,2,3)], then verify that (AB)^T=B^TA^T .

Find the transpose of the matrix [{:(4,3,1),(1,-2,3),(4,5,-1):}] .