Home
Class 12
MATHS
If sin^(-1) x + sin^(-1) y = (2pi)/(3), ...

If `sin^(-1) x + sin^(-1) y = (2pi)/(3)`, then find the value of `cos^(-1) x + cos^(-1) y`.

Text Solution

Verified by Experts

The correct Answer is:
`pi/3`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    ARIHANT PUBLICATION|Exercise Short Answer Type Questions|25 Videos
  • SAMPLE PAPER 4

    ARIHANT PUBLICATION|Exercise Long Answer Type Questions|13 Videos
  • SAMPLE PAPER 3

    ARIHANT PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS |13 Videos
  • SAMPLE PAPER 5

    ARIHANT PUBLICATION|Exercise Long answer type question|13 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1) x + cos^(-1) y = (pi)/(4) , find the value of sin^(-1) x + sin^(-1) y .

If "sin"^(-1)(1-x)_(1)-2"sin"^(-1)x=pi/(2) , then find the value of x.

Find the value of sin[cot^(-1){tan(cos^(-1)x)}]

Solve sin^(-1)x +sin^(-1)(1-x) =(pi)/(2) .

If "sin"("sin"^(-1)1/(5)+"cos"^(-1)x)=1 , then find the value of x.

Solve: "sin"^(-1)2x+"sin"^(-1)x = pi/3 .

If sin^(-1)x+sin^(-1)y=(2pi)/3 then what is cos^(-1)x +cos^(-1)y

Write the value of d/dx(sin^-1x+cos^-1x) for x in(-1,1) .

Solve: "cos"^(-1) x +"sin"^(-1) x/2= pi/6