Home
Class 12
MATHS
If f(x)=(sqrt(2)cosx-1)/(cotx-1),x!=(pi)...

If `f(x)=(sqrt(2)cosx-1)/(cotx-1),x!=(pi)/(4)`. Then, find value of `f((pi)/(4))`, so that f(x) becomes continuous at `x=(pi)/(4)`.

Text Solution

Verified by Experts

The correct Answer is:
`1/2`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    ARIHANT PUBLICATION|Exercise Short Answer Type Questions|25 Videos
  • SAMPLE PAPER 3

    ARIHANT PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS |13 Videos
  • SAMPLE PAPER 5

    ARIHANT PUBLICATION|Exercise Long answer type question|13 Videos

Similar Questions

Explore conceptually related problems

It f(x)=|cosx| , then find f.((3pi)/(4))

If f(x)=|cosx| , then find f'((3pi)/(4))

If cos^(-1) x + cos^(-1) y = (pi)/(4) , find the value of sin^(-1) x + sin^(-1) y .

If f(x)=six x and g(x)=x^3 . Then find the vlaue of (f(x)g(x))^m at x=pi/2

If f(x) = ((4x+3))/((6x-4)) , x ne (2)/(3) then find fof and the inverse of f.

If y=(sin x - cos x)^((sinx-cosx)),(pi)/(4)ltxlt(3pi)/(4) , then find (dy)/(dx) .

If f(x)=|cos x-sinx| then find f ' ((pi)/(6))

Find the value of k, the function, f(x)={:{((1-sinx)/((pi-2x)^(2))", "x!=(pi)/(2)),(" k, "x=(pi)/(2)):} is continuous at x=(pi)/(2) .