Home
Class 14
MATHS
What is the area (in sq. units) of the t...

What is the area (in sq. units) of the triangle formed by the graph of the equation 2x + 5y -12 = 0, x + y = 3 and y = 0?
समीकरण 2x + 5y -12 = 0, x + y = 3 और y = 0 के आरेख द्वारा निर्मित त्रिभुज का क्षेत्रफल (वर्ग इकाइयों में) क्या है?

A

6

B

5

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the equations \(2x + 5y - 12 = 0\), \(x + y = 3\), and \(y = 0\), we will follow these steps: ### Step 1: Find the intersection points of the lines 1. **Find the intersection of \(2x + 5y - 12 = 0\) and \(x + y = 3\)**: - From \(x + y = 3\), we can express \(y\) in terms of \(x\): \[ y = 3 - x \] - Substitute \(y\) into the first equation: \[ 2x + 5(3 - x) - 12 = 0 \] \[ 2x + 15 - 5x - 12 = 0 \] \[ -3x + 3 = 0 \implies 3x = 3 \implies x = 1 \] - Substitute \(x = 1\) back into \(y = 3 - x\): \[ y = 3 - 1 = 2 \] - So, the intersection point is \((1, 2)\). 2. **Find the intersection of \(2x + 5y - 12 = 0\) and \(y = 0\)**: - Substitute \(y = 0\) into the first equation: \[ 2x + 5(0) - 12 = 0 \implies 2x - 12 = 0 \implies 2x = 12 \implies x = 6 \] - So, the intersection point is \((6, 0)\). 3. **Find the intersection of \(x + y = 3\) and \(y = 0\)**: - Substitute \(y = 0\) into the second equation: \[ x + 0 = 3 \implies x = 3 \] - So, the intersection point is \((3, 0)\). ### Step 2: Identify the vertices of the triangle The vertices of the triangle formed by the lines are: - \(A(1, 2)\) - \(B(6, 0)\) - \(C(3, 0)\) ### Step 3: Calculate the area of the triangle The area \(A\) of a triangle given vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) can be calculated using the formula: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the coordinates of the vertices: \[ A = \frac{1}{2} \left| 1(0 - 0) + 6(0 - 2) + 3(2 - 0) \right| \] \[ = \frac{1}{2} \left| 0 - 12 + 6 \right| \] \[ = \frac{1}{2} \left| -6 \right| = \frac{1}{2} \times 6 = 3 \] ### Final Answer The area of the triangle is \(3\) square units.
Promotional Banner

Topper's Solved these Questions

  • COMPOUND INTEREST

    PINNACLE|Exercise EXERCISE|133 Videos
  • DATA INTERPRETATION

    PINNACLE|Exercise EXERCISE|684 Videos

Similar Questions

Explore conceptually related problems

The area (in sq. unit) of the triangle formed by the three graphs of the equations x=4, y=3 and 3x+4y =12 , is

The area of the triangle formed by the graphs of the equations x = 0, 2x + 3y = 6 and x + y = 3 is :

The area (in sq. unit) of the triangle formed by the graphs of the equations x = 4, y =3 and 3x+4y = 12 is समीकरण x = 4, y =3 और 3x+4y = 12 के ग्राफ द्वारा बने त्रिभुज का क्षेत्रफल (वर्ग इकाई में) कितना है?

The area in (sq units) of the triangle formed by the graphs of 8x + 3y = 24, 2x + 8 = y and the x-axis is: 8x + 3y = 24, 2x + 8 = y और x-अक्ष के आरेख द्वारा निर्मित त्रिभुज का क्षेत्रफल (वर्ग इकाइयों में) है:

Area of the triangle formed by the graph of the straight lines x-y=0,x+y=2 and the x-axis is - सरल रेखाओं x-y=0,x+y=2 और x-अक्ष के ग्राफ द्वारा निर्मित त्रिभुज का क्षेत्रफल बताइए।

What is the area (in square units) of the triangular region enclosed by the graphs of the equations x+y = 3, 2x+5y=12 and the x axis? समीकरण x+y = 3, 2x+5y=12 के आरेखों तथा x-अक्ष के द्वारा घेरे गए त्रिभुजाकार क्षेत्र का क्षेत्रफल ( वर्ग इकाई में ) क्या होगा ?

" The area (in sq.units) of the triangle formed by the lines "x=0,y=0" and "3x+4y=12" is equal to "