Home
Class 12
MATHS
If |{:(a, a, x), (m, m, m),(b, x, b):}|=...

If `|{:(a, a, x), (m, m, m),(b, x, b):}|=0,\ ` then `x` may be equal to-
a.`a` b. `b` c.`a+b` d. `m`

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a+b+c=0 and |{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 then find the value of x

Prove that abs((a,a,x),(m,m,m),(b,x,b))=m(x-a)(x-b)

If a!=b!=c\ and\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then A. a+b+c=0 B. a b+b c+c a=0 C. a^2+b^2+c^2=a b+b c+c a D. a b c=0

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then "............"

If X= { a, b, c, d } and Y = { f, b, d, g} , find X – Y

If X= { a, b, c, d } and Y = { f, b, d, g} , find X ∩ Y

If X= { a, b, c, d } and Y = { f, b, d, g} , find Y – X

If A xx B={(,(p,q),(p,r)),(,(m,q),(m,r)):}} , find A and B.

If the quadratic equations, a x^2+2c x+b=0a n da x^2+2b x+c=0(b!=c) have a common root, then a+4b+4c is equal to: a. -2 b. -2 c. 0 d. 1

If ane0,bne0,cne0 and |{:(0,x^2+a,x^4+b),(x^2-a,0,x-c),(x^3-b,x^2+c,0):}|=? , for x=0

ALLEN -DETERMINANTS-All Questions
  1. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  2. Given that q^2-p r <0,\ p >0, then the value of {:|(p, q, px+qy), ...

    Text Solution

    |

  3. If |{:(a, a, x), (m, m, m),(b, x, b):}|=0,\ then x may be equal to- ...

    Text Solution

    |

  4. The value of the determinant {:|(alpha,beta,l), (alpha,x, n),(alpha,be...

    Text Solution

    |

  5. If the system of linear equations x+a y+a z=0,\ x+b y+b z=0,\ x+c y...

    Text Solution

    |

  6. If the system of equations x+y-3=0,\ (1+K)x+(2+K)y-8=0\ &\ x-(1+K)y...

    Text Solution

    |

  7. If the determinant |[a+p, l+x, u+f], [b+q, x+y, v+g], [c+r, n+z, w+h]|...

    Text Solution

    |

  8. The values of lambda for which the system of equations x+y+z=6,x+2y+3z...

    Text Solution

    |

  9. If x , y , z are in A.P. , then the value of the determinant are in A....

    Text Solution

    |

  10. Let p be the sum of all possible determinabnts of order 2 having 0,...

    Text Solution

    |

  11. Statement 1 is True: Statement 2 is True; Statement 2 is a correct e...

    Text Solution

    |

  12. Statement 1 is True: Statement 2 is True; Statement 2 is a correct e...

    Text Solution

    |

  13. Statement 1 is True: Statement 2 is True; Statement 2 is a correct e...

    Text Solution

    |

  14. Without expanding the determinant prove that: {:|(0,p-q,p-r),( q-p,0, ...

    Text Solution

    |

  15. Without expanding the determinant prove that: {:|(0,a,-b),(-a,0,-c),(...

    Text Solution

    |

  16. Prove that: |[ax,by,cz], [x^2,y^2,z^2], [1,1,1]|=|[a,b,c],[x,y,z],[yz,...

    Text Solution

    |

  17. Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

    Text Solution

    |

  18. Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

    Text Solution

    |

  19. Using properties of determinants or otherwise evaluate {:|(18, 40, 8...

    Text Solution

    |

  20. Using the property of determinants andd without expanding in following...

    Text Solution

    |