Home
Class 12
MATHS
If vec(alpha), vec(beta),vec(gamma) are ...

If `vec(alpha), vec(beta),vec(gamma)` are three non-collinear unit vectors such that `vec(alpha)+2vec(beta)+3vec(gamma)` is collinear with `vec(beta)+vec(y)` and `vec(alpha)+2vec(beta)` is collinear with `vec(beta)-vec(gamma)`, then `2vec(alpha).vec(beta)+6vec(alpha).vec(gamma) +3vec(beta).vec(gamma)` equal to

A

`-(11)/(2)`

B

`-5`

C

`-7`

D

`-9`

Text Solution

Verified by Experts

The correct Answer is:
C

`vec(alpha)+2vec(beta)+3vec(gamma)=m(vec(beta)+vec(gamma))`
`implies vec(alpha) + vec(beta) (2-m)+vec(gamma)(3-m)=vec(0)`
Also, `vec(alpha)+vec(beta) (2-n)+nvec(gamma) = vec(0)`
`vec(beta) (n-m)=vec(gamma)(n+m-3)`
implies n=m =(3)/(2) implies |2vec(alpha) + vec(beta) + 3vec(gamma)| = 0`
` implies 2vec(alpha).vec(beta)+ 6vec(alpha).vec(gamma)+3vec(beta).vec(gamma)=-7`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If vec(a) and vec(b) are non-collinear vectors find the value of x for which vectors vec(alpha)=(x-2)vec(a)+vec(b) and vec(beta)=(3+2x)vec(a)-2vec(b) are collinear.

If vec(a),vec(b),vec( c ) are mutually perpendicular vectors of equal magnitudes, show that the vector vec(a)+vec(b)+vec( c ) is equally inclined to vec(a),vec(b) and vec( c ) .

Let vec(p),vec(q),vec(r) be three unit vectors such that vec(p)xxvec(q)=vec(r) . If vec(a) is any vector such that [vec(a),vec(q),vec(r )]=1,[vec(a),vec(r),vec(p )]=2 , and [vec(a),vec(p),vec(q )]=3 , then vec(a)=

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

The points A(vec(a)),B(vec(b)) and C(vec( c )) are collinear then ………….

Show that the vectors vec(a),vec(b) and vec( c ) coplanar if vec(a)+vec(b),vec(b)+vec( c ) and vec( c )+vec(a) are coplanar.

Show that, (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xx vec(b)) .

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .

If |vec(a)xx vec(b)|=vec(a).vec(b) then find the angle between vec(a) and vec(b) .

ALLEN -TEST PAPERS-part-2 Mathematics
  1. If f' ((x)/(y)). f((y)/(x))=(x^(2)+y^(2))/(xy) AA x,y in R^(+) and f(1...

    Text Solution

    |

  2. Range of the function f defined by f(x) =[(1)/(sin{x})] (where [.] a...

    Text Solution

    |

  3. The value of sqrt(3) cot 20^(@) -4cos20^(@) is

    Text Solution

    |

  4. Which of the following function is surjective but not injective?

    Text Solution

    |

  5. f:RrarrR is a function satisfying f(x+5)gef(x)+5 and f(x+1)lef(x)+1. ...

    Text Solution

    |

  6. If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0,...

    Text Solution

    |

  7. If a(1) is the greatest value of f(x) , where f(x) =((1)/(2+[sinx])) (...

    Text Solution

    |

  8. The value of f(0), so that the function f(x)=((27-2x)^(1/3)-3)/(9-3(...

    Text Solution

    |

  9. Let f:NrarrN be a function such x-f(x)=19[(x)/(19)]-90[(f(x))/(90)],AA...

    Text Solution

    |

  10. Range of sin^(-1)((x^(2)+1)/(x^(2)+2)) is

    Text Solution

    |

  11. Let f:[-(pi)/(3),(2pi)/(3)]rarr[0,4] be a function defined as f(x) = ...

    Text Solution

    |

  12. If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vecto...

    Text Solution

    |

  13. If the angle between the vectors vec(a)=hat(i)+(cos x)hat(j)+hat(k) a...

    Text Solution

    |

  14. Find the slope of a common tangent to the ellipse (x^2)/(a^2)+(y^2)/(b...

    Text Solution

    |

  15. If a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 makes eq...

    Text Solution

    |

  16. The vertices of the hyperbola 9x^(2)-16y^(2)-36x+96y-252=0 are

    Text Solution

    |

  17. If P N is the perpendicular from a point on a rectangular hyperbola x ...

    Text Solution

    |

  18. If the range of y=sin^(-1)x+cos^(-1)x+tan^(-1) x is [k,K], then

    Text Solution

    |

  19. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then

    Text Solution

    |

  20. Solution set of inequation (cos^(-1)x)^(2)-(sin^(-1)x)^(2)gt0 is

    Text Solution

    |