Home
Class 12
PHYSICS
In figure shown, left arm of a U-tube is...

In figure shown, left arm of a `U-`tube is immersed in a hot water bath at temperature ` t^(@)C`, and right arm is immersed in a bath of melting ice, the height of manometric liquid in respective column is `h_(1)` and `h_(0)`. Determine the coefficient of expansion of the liquid.

Text Solution

Verified by Experts

The liquid is in hydrostatic equilibrium ` implies rho_(t) gh_(t) = rho_(0)gh_(0)`
Where, ` rho_(t)` is density of liquid in hot bath, `rho_(0)` is density of liquid in cold bath.
Volumes of a given mass M of liquid at temperature t and `0^(@)C`
are ralated by `V_(t) = V_(0) (1+gammat) "Since" rho_(t)V_(t) = rho_(0) V_(0) implies rho_(t) = (rho_(0)V_(0))/(V_(t)) = (rho_(0))/((1+gammat))`
Since ` h_(t) = (rho_(0)h_(0))/(rho_(t)) = h_(0)(1+gammat)` which on solving for ` gamma `, yields `gamma = ((h_(t)-h_(0)))/(h_(0)t) `
Promotional Banner

Topper's Solved these Questions

  • GEOMETRICAL OPTICS

    ALLEN |Exercise SOME WORKED OUT EXAMPLES|84 Videos
  • GEOMETRICAL OPTICS

    ALLEN |Exercise EXERCISE -01|65 Videos
  • CURRENT ELECTRICITY

    ALLEN |Exercise EX.II|66 Videos
  • GRAVITATION

    ALLEN |Exercise EXERCISE 4|9 Videos

Similar Questions

Explore conceptually related problems

The apparatus shown in the figure consists of four glass columns connected by horizontal section. The height of two central column B and C are 49 cm each. The two outer columns A and D are open to the temperature. A and C are maintained at a temperature of 95^@C while the columns B and D are maintained at 5^@C . The height of the liquid in A and D measured from the base the are 52.8 cm and 51cm respectively. Determine the coefficient of thermal expansion of the liquid

In a vertical U -tube containing a luquid, the two arms are maintained at different temperatures, t_(1) and t_(2) . The liquid coplumns in the two arms have heights l_(1) and l_(2) respectively. The coefficient of volume expansion of the liquid is equal to

A small spherical monoatomic ideal gas bubble (gamma= (5)/(3)) is trapped inside a liquid of density rho_(l) (see figure) . Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_(0) , the height of the liquid is H and the atmospheric pressure is P_(0) (Neglect surface tension). When the gas bubble is at a height y from the bottom , its temperature is :-

A small spherical monoatomic ideal gas bubble (gamma=5//3) is trapped inside a liquid of density rho (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_0 , the height of the liquid is H and the atmospheric pressure P_0 (Neglect surface tension). The buoyancy force acting on the gas bubble is (Assume R is the universal gas constant)

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T The relation between densities of solid and liquid at temperature T is

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T Imagine the depth of the block submerged in the liquid ,does not change on increasing temperature then

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T If temperature of system increases, then fraction of solid submerged in liquid

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T Assume block does not expand on heating . The temperature at which the block just begins to sink in liquid is

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half of its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T Imagine fraction submerged does not change on increasing temperature the relation between gamma_(L) and alpha_(S) is

A small spherical monoatomic ideal gas bubble (gamma=5//3) is trapped inside a liquid of density rho (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_0 , the height of the liquid is H and the atmospheric pressure P_0 (Neglect surface tension). As the bubble moves upwards, besides the buoyancy force the following forces are acting on it