Home
Class 12
PHYSICS
A cubical box of side 1 m contains heliu...

A cubical box of side `1 m` contains helium gas (atomic weight 4) at a pressure of `100 N//m^2`. During an observation time of `1 second`, an atom travelling with the root - mean - square speed parallel to one of the edges of the cube, was found to make `500 hits` with a particular wall, without any collision with other atoms . Take `R = (25)/3 j //mol - K and k = 1.38 xx 10^-23 J//K`.
(a) Evaluate the temperature of the gas.
(b) Evaluate the average kinetic energy per atom.
( c) Evaluate the total mass of helium gas in the box.

Text Solution

Verified by Experts

Volume of the box = ` 1m^(3)`, Pressure of the gas =` 100N//m^(2)`.
Let `T` be the temperature of the gas
(a) Time between two consecutive collections with one wall = ` (1)/(500)"sec"`
This time should be equal to `(2l)/(V_(rms))` , where l is the side of the cube.
`(2l)/(V_("rms")) = (1)/(500) implies V_("rms") = 1000m//s therefore sqrt((3RT)/(M)) = 1000 implies T ((1000)^(2)M)/(3R) = ((10)^(6)(4xx10^(3)))/(3(25/3)) = 160K`
(b) Average kinetic energy per atom `(3)/(2)kT = (3)/(2) [(1.38xx10^(-23) xx 160)] J = 3.312 xx ^(-21)J`
(c) From `PV` = `nRT = (m)/(M)RT` , Mass of helium gas in the box m=`(PVM)/(RT)`
Substituting the values , `m= ((100)(1) (4xx10_(-3)))/((25)/(3) (160)) = 3.0 xx 10^(-4)`kg
Promotional Banner

Topper's Solved these Questions

  • GEOMETRICAL OPTICS

    ALLEN |Exercise SOME WORKED OUT EXAMPLES|84 Videos
  • GEOMETRICAL OPTICS

    ALLEN |Exercise EXERCISE -01|65 Videos
  • CURRENT ELECTRICITY

    ALLEN |Exercise EX.II|66 Videos
  • GRAVITATION

    ALLEN |Exercise EXERCISE 4|9 Videos

Similar Questions

Explore conceptually related problems

A cubical box of side 1 m contains helium gas (atomic weight 4) at a pressure of 100 N//m^2 . During an observation time of 1 second , an atom travelling with the root - mean - square speed parallel to one of the edges of the cube, was found to make 500 hits with a particular wall, without any collision with other atoms . Take R = (25)/3 j //mol - K and k = 1.38 xx 10^-23 J//K . (a) Evaluate the temperature of the gas. (b) Evaluate the total mass of helium gas in the box.

At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rms speed of a helium gas atom at - 20 ^(@)C ? (atomic mass of Ar = 39.9 u, of He = 4.0 u).

One kg of a diatomic gas is at pressure of 8xx10^4N//m^2 . The density of the gas is 4kg//m^3 . What is the energy of the gas due to its thermal motion?

Let barv,v_(rms) and v_p respectively denote the mean speed. Root mean square speed, and most probable speed of the molecules in an ideal monoatomic gas at absolute temperature T. The mass of a molecule is m. Then