Home
Class 12
PHYSICS
A disc of mass 3 m and a disc of mass m ...

A disc of mass 3 m and a disc of mass m are connected by a massless spring of stiffness k. The heavier is disc placed on the ground with the spring vertical and lighter disc on top from its equilibrium position the upper disc is pushed down by a distance `delta` and released. Then.

A

if `delta gt 3mg//k`, the lower disc will bounce up

B

if `delta=2 mg//k`, maximum normal reaction from ground on lower disc `=6 mg`

C

if `delta = 2 mg//k`, maximum normal reaction from ground on lower disc `= 4 mg`

D

if `delta gt 4mg//k`, the lower disc will bounce up

Text Solution

Verified by Experts

The correct Answer is:
B, D

From energy conservation

`1/2kdelta_(1^(2)) = mg(delta_(1) + x_(1)) + 1/2kx_(1^(2))`
`rArr delta_(1^(2)) - (2mg)/(k)delta_(1) = (15m^(2)g^(2))/(k^(2)) = 0`
`rArr delta_(1) = (5mg)/(k) = delta = (4mg)/(k)`
`rArr` If `delta ge (4mg)/(k)` the lower disk will bounce up.
Now if `delta = (2mg)/(k)` then maximum normal reaction
from ground on lower disk
`N = 3mg + k(x_(0) + delta) = 6mg`
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Exercise- 3 Match The Column|1 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Asseration & Reason|7 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Exercise-01|117 Videos
  • RACE

    ALLEN |Exercise Basic Maths (Wave Motion & Dopplers Effect) (Stationary waves & doppler effect, beats)|25 Videos
  • TEST PAPER

    ALLEN |Exercise PHYSICS|4 Videos

Similar Questions

Explore conceptually related problems

Find the time period of mass M when displaced from its equilibrium position and then released for the system shown in figure. .

Figure shows a system consisting of a massless pulley, a spring of force constant k and a block of mass m. If the block is slightly displaced vertically down from is equilibrium position and then released, the period of its vertical oscillation is

A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless springs of spring constatn k which are fixed to the wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L. The disk is initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disk rolls without slipping with velocity vecV_0 = vacV_0hati. The coefficinet of friction is mu. The centre of mass of the disk undergoes simple harmonic motion with angular frequency omega equal to -

A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless springs of spring constatn k which are fixed to the wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L. The disk is initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disk rolls without slipping with velocity vecV_0 = vacV_0hati. The coefficinet of friction is mu. The maximum value of V_0 for whic the disk will roll without slipping is-

A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless springs of spring constatn k which are fixed to the wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L. The disk is initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disk rolls without slipping with velocity vecV_0 = vacV_0hati. The coefficinet of friction is mu. The net external force acting on the disk when its centre of mass is at displacement x with respect to its equilibrium position is.

Two blocks of masses m and M connected by a spring are placed on frictionless horizontal ground. When the spring is relaxed, a constant force F is applied as shown. Find maximum extension of the spring during subsequent motion.

Two blocks A and B of mass m and 2m respectively are connected by a massless spring of spring constant K . This system lies over a smooth horizontal surface. At t=0 the bolck A has velocity u towards right as shown while the speed of block B is zero, and the length of spring is equal to its natural length at that at that instant. {:(,"Column I",,"Column II"),((A),"The velocity of block A",(P),"can never be zero"),((B),"The velocity of block B",(Q),"may be zero at certain instants of time"),((C),"The kinetic energy of system of two block",(R),"is minimum at maximum compression of spring"),((D),"The potential energy of spring",(S),"is maximum at maximum extension of spring"):}

A mass M is suspended from a light spring. An additional mass m added to it displaces the spring further by distance x then its time period is

A uniform cylinder of length (L) and mass (M) having cross sectional area (A) is suspended, with its length vertical, from a fixed point by a massless spring, such that it is half - submerged in a liquid of density (rho) at equilibrium position. When the cylinder is given a small downward push and released it starts oscillating vertically with small amplitude. If the force constant of the spring is (k), the prequency of oscillation of the cylindcer is.

A body of mass m is attached to one end of a massless spring which is suspended vertically from a fixed point. The mass is held in hand, so that the spring is neighter stretched nor comprssed. Suddenly the support of the hand is removed. The lawest position attained by the mass during oscillation is 4 cm below the point, where it was held in hand.

ALLEN -SIMPLE HARMONIC MOTION-Exercise-02
  1. A mass M is performing linear simple harmonic motion. Then correct gra...

    Text Solution

    |

  2. A uniform cylinder of length (L) and mass (M) having cross sectional a...

    Text Solution

    |

  3. Two identical springs are fixed at one end and masses 1kg and 4kg are ...

    Text Solution

    |

  4. A cylindrical block of the density rho is partically immersed in a liw...

    Text Solution

    |

  5. A mass of 0.2 Kg is attached to the lower end of a massles spring of f...

    Text Solution

    |

  6. A horizontal plank has a rectangular block placed on it. The plank sta...

    Text Solution

    |

  7. A particle is subjected to two simple harmonic motions along x and y d...

    Text Solution

    |

  8. A particle moves in the x-y the accoding to the equation, r = (hati + ...

    Text Solution

    |

  9. Two blocks A and B, each of mass m, are connected by a masslesss sprin...

    Text Solution

    |

  10. A solid uniform cylinder of mass M attached to a massless spring of fo...

    Text Solution

    |

  11. A ball is suspended by a thread of length l at the point O on an incl...

    Text Solution

    |

  12. A cage of mass M hangs from a light spring of force constant k. A body...

    Text Solution

    |

  13. In the above problem, the frequnecy of oscillations of the cage will b...

    Text Solution

    |

  14. The amplitude of a particle executing SHM about O is 10 cm. Then

    Text Solution

    |

  15. The angular frequency of a spring block system is omega(0). This syste...

    Text Solution

    |

  16. The x-coordinate of a particle moving on x-axis is given by x = 3 sin...

    Text Solution

    |

  17. Two blocks of masses 3 kg and 6kg rest on horizontal smooth surface. T...

    Text Solution

    |

  18. A disc of mass 3 m and a disc of mass m are connected by a massless sp...

    Text Solution

    |

  19. The displacement-time graph of a particle executing SHM is shown in fi...

    Text Solution

    |