Home
Class 12
MATHS
Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqr...

Let `T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2)` then-

A

`T lt 1`

B

`T = 1`

C

`1 lt T lt 2`

D

`T lt 2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : (sqrt(3)+sqrt(2))^(6)-(sqrt(3)-sqrt(2))^(6)

2sqrt(6)xx3sqrt(54) = :-

Simplify : (2)/(sqrt5+ sqrt3) + (1)/(sqrt3+sqrt2) - (3)/(sqrt5+sqrt2)

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

4^(5 log_(4sqrt(2)) (3-sqrt(6)) - 6 log_8(sqrt(3)-sqrt(2)))

Simiplify (1)/(7+4sqrt3)+(1)/(2+sqrt5)

Simplify :- (i) (6)/(sqrt(2)) (ii) (sqrt(3))/(3) (iii) sqrt((3)/(4)) (iv) (6)/(sqrt(2)) (v) (sqrt(5))/(10) (vi) sqrt((16)/(2))

If a_(1), a_(2), a_(3),……,a_(n) are in AP, where a_(i) gt 0 for all i, show that (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + …..+ (1)/(sqrt(a_(n-1))+ sqrt(a_(n)))= (n-1)/(sqrt(a_(1)) + sqrt(a_(n)))

The value of the determinant |{:(sqrt(6),2i,3+sqrt(6)i),(sqrt(12),sqrt(3)+sqrt(8)i,3sqrt(2)+sqrt(6)i),(sqrt(18),sqrt(2)+sqrt(12)i,sqrt(27)+2i):}| is (where i= sqrt(-1)

Find the sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))