Home
Class 12
MATHS
(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(...

`(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(1/(b-a))xx(x^(1/(c-a)))^(1/(c-b))`

A

1

B

8

C

0

D

None

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN |Exercise Exercise(S-1)|8 Videos
  • BASIC MATHS

    ALLEN |Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN |Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF INTEGRALS

    ALLEN |Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN |Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that the result : ((2^(a) )/( 2^(b)) ) ^(a+b) xx( (2^(b))/( 2^(c))) ^(b+c) xx( (2^(c))/( 2^(a)))^(c+a)=1

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

If the points (a^3/(a-1),(a^2-3)/(a-1)) , (b^3/(b-1),(b^2-3)/(b-1)) , (c^3/(c-1),(c^2-3)/(c-1)) are collinear for 3 distinct values a,b,c and a!=1, b!=1, c!=1 , then find the value of abc-(ab+bc+ca)+3(a+b+c) .

If a,b,c are in geometric progression then ((1)/(b)+ (1)/(c )-(1)/(a)) ((1)/(c ) + (1)/(a) - (1)/(b)) = ……..

Prove the followings : "cot"^(-1)(ab+1)/(a-b)+"cot"^(-1)(bc+1)/(b-c)+"cos"^(-1)(ca+1)/(c-a)=pi(agtbgtc)

Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a', b', c', respectively from the origin, then prove that (1)/(a^2)+(1)/(b^2)+(1)/(c^2)=(1)/((a')^2)+(1)/((b')^2)+(1)/((c')^2) .

If a,b,c,d be four distinct positive quantities in AP, then (a) bcgtad (b) c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))

Show that ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 is an identity.

If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degree < 3, then prove that (dg(x))/(dx)=|{:(1,a, f(a)(x-a)^(-2)),(1,b,f(b)(x-b)^(-2)), (1,c,f(c)(x-c)^(-2)):}|/|{:(a^2,a,1),(b^2,b,1),(c^2,c,1):}|

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero