Home
Class 12
MATHS
The smallest positive value of x (in deg...

The smallest positive value of `x` (in degrees) for which `tan(x+100^@)=tan(x+50^@).tanx.tan(x-50^@)` is

Text Solution

Verified by Experts

The correct Answer is:
`x=30^(@)`
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN |Exercise EX-JM|8 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise EX -JA|8 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise EX-S1|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN |Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN |Exercise All Questions|100 Videos

Similar Questions

Explore conceptually related problems

Find the value of Sin ( tan^(-1) x)

The number of values of x satisfying the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3x is ____

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

The complete set of values of a for which the function f(x)=tan^(-1)(x^(2)-18x +a)gt 0 AA x in R is

The value of (tan3x)/(tanx) do not lie between …………

Prove that, tan25^(@).tan15^(@)+tan15^(@)tan50^(@)+tan25^(@)tan50^(@)=1 .

Solve for x : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Prove that tan4x=(4tanx(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

Prove that tan4x=(4tanx(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)