Let catching point be `(x_(1), y_(1))` then, `y_(1)-x_(1)=0` and `x_(1)^(2)+y_(1)^(2)=8` Therefore, `2x_(1)^(2)=8 rArr x_(1)^(2)=4 rArr x_(1)=+-2`, So possible points are `(2, 2)` and `(-2, -2)`.
Topper's Solved these Questions
BASIC MATHS
ALLEN |Exercise Exercise-02|53 Videos
BASIC MATHS
ALLEN |Exercise Exersice-03|7 Videos
AIIMS 2019
ALLEN |Exercise PHYSICS|39 Videos
CIRCULAR MOTION
ALLEN |Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/4)log (1 tan x) dx
By using the properties of definite integrals, evaluate the integrals int_(0)^(pi)(xdx)/(1+sinx)
By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(sinx-cosx)/(1+sinxcosx)dx
By using the properties of definite integrals, evaluate the integrals int_(2)^(8)abs(x-5)dx
By using the properties of definite integrals, evaluate the integrals int_(0)^(2pi)cos^(5)xdx
By using the properties of definite integrals, evaluate the integrals int_(0)^(4)abs(x-1)dx
By using the properties of definite integrals, evaluate the integrals int_(0)^(2)xsqrt(2-x)dx
By using the properties of definite integrals, evaluate the integrals int_(0)^(a)(sqrtx)/(sqrtx+sqrt(a-x))dx
By using the properties of definite integrals, evaluate the integrals int_(0)^(pi)log(1+cos x) dx